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Abstract

 

Adaptive autonomous agents have to learn about the
effects of their actions so as to be able to improve
their performance and adapt to long term changes.
The problem of correlating actions with changes in
sensor data is

 

 O(n

 

2

 

)

 

 and therefore computationally
infeasible for any non-trivial application. We pro-
pose to make this problem more manageable by us-
ing focus of attention. In particular, we discuss two
complementary methods for focus of attention: 

 

per-
ceptual selectivity

 

 restricts the set of sensor data the
agent attends to at a particular instant, while 

 

cogni-
tive selectivity

 

 restricts the set of internal structures
that is updated at a particular instant. We present re-
sults of an implemented algorithm, a variant of the

 

schema mechanism 

 

[Drescher 91], which employs
these two forms of focus of attention. The results
demonstrate that incorporating focus of attention
dramatically improves the tractability of learning
action models without affecting the quality of the
knowledge learned, at the relatively small cost of
doubling the number of training examples required
to learn the same knowledge.

 

1 Introduction

 

Autonomous agents have to learn about their environment so
as to improve (because user programming has its limitations)
and adapt (because things change). Several learning methods
for autonomous agents have been proposed, in particular re-
inforcement learning [Sutton 91] [Kaelbling 93], classifier
systems [Holland 86] [Wilson 85], action model learners
[Drescher 91] [Maes 92] and mixed methods [Sutton 90]
[Booker 88]. No matter which of these algorithms is used, a
learning agent will have to correlate some number of sensory
inputs with some number of internal structures in an attempt
to extend its knowledge. This is conceptually a cross-product
problem: each sensory bit should be correlated in some fash-
ion with each already-built internal structure. As the number
of sensory bits or the number of internal structures grows, the
work required to perform this correlation grows approximate-
ly as 

 

O(n

 

2

 

) .

 

Most unsupervised learning algorithms attempt to learn
all that there is to know about the environment, with no selec-
tivity. They flail about, often at random, attempting to learn
every possible fact. It takes them far too long to learn a mass

of mostly-irrelevant data. For example, [Drescher 91] intro-
duces an algorithm for building successively more powerful
descriptions of the results of taking particular actions in an
unpredictable world. However, his algorithm scales poorly,
and hence is unsuitable for realistic worlds with many facts,
given the current state of computational hardware. Since its
running speed decreases as more is learned about the world,
the algorithm eventually becomes unusably slow, just as the
agent is learning enough to make otherwise useful decisions.

A real creature does not do this. Instead, it uses different
focus of attention mechanisms, among others 

 

perceptual se-
lectivity

 

 and 

 

cognitive selectivity

 

, to guide its learning. By fo-
cusing its attention to the important aspects of its current ex-
perience and memory, a real creature dramatically decreases
the perceptual and cognitive load of learning about its envi-
ronment and making decisions about what to do next. This re-
search uses similar methods of selectivity to build a compu-
tationally tractable, unsupervised learning system that might
be suitable for use in an autonomous agent that must learn and
function in some complex world.

This paper presents an algorithm for learning statistical
action models which incorporates perceptual and cognitive
selectivity. In particular, we implemented a variation on
Drescher’s 

 

schema mechanism

 

 and demonstrate that the com-
putational complexity of the algorithm is significantly im-
proved without harming the correctness of the action models
learned. The particular forms of perceptual and cognitive se-
lectivity that are employed represent domain-independent
heuristics for focusing attention that potentially can be incor-
porated into any learning algorithm.

The paper is organized as follows. Section 2 discusses dif-
ferent notions of focus of attention, concentrating on heuris-
tics for perceptual and cognitive selectivity. Section 3 de-
scribes the algorithm implemented and the microworld used.
Section 4 elaborates on the experimental results obtained.
Section 5 lists some shortcomings and discusses future exten-
sions. Finally, section 6 discusses related work.

 

2 Focus of Attention Methods
2.1 Introduction

 

To ease its learning task, an agent can employ a range of
methods for focus of attention. It can be selective in terms of
what sensor data it attends to as well as what internal struc-
tures it considers when acting and learning. These forms of
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focus of attention are termed 

 

perceptual

 

 and 

 

cognitive selec-
tivity

 

 respectively. They are illustrated by the left and right
braces respectively in Figure 1 below, and discussed in more
detail in the following sections.

Along another dimension, there is a distinction between

 

domain-dependent

 

 and 

 

domain-independent methods

 

 for fo-
cus of attention. Domain-independent methods represent
general heuristics for focus of attention that can be employed
in any domain. For example, one can attempt only to correlate
events that happened close to one another in time. Domain-
dependent heuristics, on the other hand, are specific to the do-
main at hand. They typically have been preprogrammed (by
natural or artificial selection or by a programmer). For exam-
ple, experiments have shown that when a rat becomes sick to
its stomach, it will assume that whatever it ate recently is
causally related to the sickness. That is, it is very hard for a
rat to learn that a light flash or the sound of a bell is correlated
to the stomach problem because it will focus on recently eat-
en food as the cause of the problem [Garcia 72]. This demon-
strates that animals have evolved to pay attention to particular
events when learning about certain effects.

Finally, the focus mechanism can be 

 

goal-driven

 

 and/or

 

world-driven

 

. Focus of attention in animals is both strongly
world- and goal-dependent. The structure of the world deter-
mines which sensory or memory bits may be “usually” ig-
nored (e.g. those not local in time and space), while the task
determines those which are relevant some of the time and not
at other times. For example, when hungry, any form of food
is a very important stimulus to attend to.

The results reported in this paper concern world-depen-
dent, but goal-independent, as well as domain-independent
cognitive and sensory selectivity. Such pruning depends on
constant properties of the environment and common tasks,
and does not take into account what the current goal of the
agent is. The methods can be applied to virtually any domain.
While it is true that, in complex worlds, goal-driven and do-
main-dependent pruning is quite important, it is surprising
how much of an advantage even goal-independent pruning
can convey. Goal-driven and domain-dependent strategies for
focus of attention are briefly discussed in the future research
section.

 

2.2 Perceptual selectivity

 

Perceptual selectivity limits what stimuli might possibly be
attended to at any one time, which puts limits on what might
be learnable at that time. For example, a real creature would

schema 1
schema 2
schema 3

schema n

..........

learning

sensor data
(including state)

internal structures

Figure 1. Sensory (left) and cognitive (right) pruning.

 

not pay attention to every square centimeter of its skin and try
to correlate every nerve ending therein to every possible reti-
nal cell in its eyes at every moment. Consequently, it might
never learn some peculiar correlation between a particular
patch of skin and a flash of light on some part of its retina, but
presumably such correlations are not important to it in its nat-
ural environment.

Obvious physical dimensions along which to be perceptu-
ally selective include 

 

spatial

 

 and 

 

temporal

 

 selectivity. The
universe tends to be spatially coherent: causes are generally
located nearby to their effects (for example, pushing an object
requires one to be in contact with it). Further, many causes
lead to an observable effect within a short time (letting go of
an object in a gravity field causes it to start falling immediate-
ly, rather than a week later). Real creatures use these sorts of
spatial and temporal locality all the time, often by using eyes
that only have high resolution in a small part of their visual
field, and only noticing correlations between events that take
place reasonably close together in time. While it is certainly

 

possible

 

 to conceive of an agent that tracks every single visu-
al event in the sphere around it, all at the same time, and
which can remember pairs of events separated by arbitrary
amounts of time without knowing a priori that the events
might be related, the computational burden in doing so is es-
sentially unbounded.

 

1

 

 The algorithm discussed in section 3
implements temporal selectivity as well as spatial selectivity
to reduce the number of sensor data that the agent has to cor-
relate with its internal structures (see Figure 1 above). Note
that the perceptual selectivity implemented is of a “passive”
nature: the agent prunes its “bag of sensory bits,” rather than
changing the mapping of that bag of bits to the physical world
by performing an action that changes the sensory data (such
as changing its point of view).The latter would constitute ac-
tive perceptual attention

 

.

 

2.3 Cognitive selectivity

 

Cognitive selectivity limits what internal structures are at-
tended to at any given moment.

Notice that for any agent that learns many facts, being
cognitively selective is likely to be even more important than
being perceptually selective, in the long run. The reasons for
this are straightforward. First, consider the ratio of sensory to
memory items. While the total number of possible sensory
bits is limited, the number of internal structures may grow
without bound. This means that, were we to use a strategy
which prunes all sensory information and all cognitive infor-
mation each to some 

 

constant fraction

 

 of their original, un-
pruned case, we would cut the total computation required by
some constant factor—but this factor would be much larger
in the cognitive case, because the number of facts stored
would likely far outnumber the number of sensory bits avail-
able.

Second, consider a strategy in which a 

 

constant number

 

 of
sensory bits or a 

 

constant number

 

 of remembered facts are at-
tended to at any given time. This is analogous to the situation
in which a real organism has hard performance limits along

 

1.  Many algorithms for learning from experience employ an ex-
treme form of temporal selectivity: the agent can only correlate
events that are 

 

“

 

one timestep

 

”

 

 apart. 
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both perceptual and cognitive axes; no matter how many facts
it knows, it can only keep a fixed number of them in working
memory. In this case, as the internal structures grow, the or-
ganism can do its sensory-to-memory correlations in essen-
tially constant time, rather than the aforementioned 

 

O(n

 

2

 

)

 

time, though at a cost: as its knowledge grows, it is ignoring
at any given time an increasingly large percentage of all the
knowledge it has.

Compromise strategies which keep growth in the work re-
quired to perform these correlations within bounds (e.g., less
than 

 

O(n

 

2

 

)

 

), yet not give in completely to utilizing ever-
smaller fractions of current knowledge (e.g., more than 

 

O(1)

 

)
are possible. One way to compromise is to use the current

 

goal

 

 to help select what facts are relevant; such 

 

goal-driven
pruning 

 

will be discussed later. Since generally only a small
number of goals are likely to be relevant or applicable at any
one time (often only one), this can help to keep the amount of
correlation work in bounds.

 

2

 

Similarly, one can use the world or sensor data to restrict
the number of structures looked at (as is the case in the algo-
rithm described in this paper). Not all internal structures are
equally relevant at any given instant. In particular, internal
structures that refer neither to current nor expected future per-
ceptual inputs are less likely to be useful than internal struc-
tures which do. This is the particular domain-independent,
goal-independent, world-driven heuristic for cognitive selec-
tivity which is employed in the algorithm described in the
next section. Again, in real creatures domain-dependent and
goal-driven cognitive selectivity play a large role too. For ex-
ample, the subset of internal structures that are considered at
some instant is not only determined by what the agent senses
and what it expects to sense next, but also by what it is “aim-
ing” to sense or not sense (i.e., the desired goals). Goal-driven
and domain-dependent solutions to cognitive selectivity are
discussed in the future research section.

 

3 Improving learning via focus
3.1 The agent and its environment

 

This research started with an existing learning algorithm
[Drescher 91], and added a focus of attention mechanism, as
described below, to make learning faster (requiring less com-
putation per timestep). While Drescher’s original work does
include a concept similar to both tactical and strategic goals,
his system does not exploit goals to guide the learning pro-
cess. Further, it has no perceptual selectivity (apart from a
narrow temporal selectivity), and assumes that every sensory
bit might be useful all the time.

 

3

 

 This approach leads to a the-
oretically “pure” result, but one which is difficult to use in a
real application, and somewhat implausible in describing
how real organisms learn.

 

2.  Another way to compromise might be to investigate much more
of memory when other demands on the agent’s time are minimal, es-
sentially doing as much extra work as possible when the opportunity
presents itself. Such an agent might “dream” in an attempt to piece
together old, probably-irrelevant facts and recent data to build new
facts, but only do this when it is not otherwise engaged in perform-
ing useful work.

 

Drescher is interested in Piagetian modeling, so his mi-
croworld is oriented towards the world as perceived by a very
young infant (less than around five months old). The simpli-
fied microworld (which is shown below) consists of a simu-
lated, two-dimensional “universe” of 49 grid squares (7 by 7).

Each square can be either empty or contain some object. Su-
perimposed upon this universe is a simulated “eye” which can
see a square region 5 grid squares on a side, and which can be
moved around within the limits of the “universe.” This eye
has a “fovea” of a few squares in the center, which can see ad-
ditional details in objects (these extra details can be used to
differentiate objects enough to determine their identities).
The universe also consists of a “hand” which occupies a grid
square, and can bump into and grasp objects. (The infant’s
arm is not represented; just the hand.) An immobile “body”
occupies another grid square.

Every sensory item is represented in the simulation as a
single bit. In Drescher’s original algorithm, there is no group-
ing of these bits in any particular way (e.g., as a retinotopic
map, or into particular modalities); the learning algorithm
sees only an undifferentiated “bag of bits.”

The “facts” learned by this system are what Drescher calls

 

schemas

 

. They consist of a triple of 

 

context

 

 (the initial state
of the world, as perceived by the sensory system), the 

 

action

 

taken on this iteration, and 

 

result

 

 (the subsequent perceived
state), which maps actions taken in a particular configuration
of sensory inputs into the new sensory inputs resulting from
that action. A typical schema might therefore be, “If my eye’s
proprioceptive feedback indicates that it is in position (2,3)
[

 

context

 

], and I move my eye one unit to the right [

 

action

 

],
then my eye’s proprioceptive feedback indicates that it is in
position (3,3) [

 

result

 

].” Another typical schema might be, “If
my hand’s proprioceptive feedback indicates that it is in posi-
tion (3,4) [

 

context

 

], and I move it one unit back [

 

action

 

], I will
feel a touch on my mouth and on my hand [

 

result

 

]” (this is be-
cause the hand will move from immediately in front of the
mouth to in contact with the mouth). Notice that this latter

 

3.  With one very small exception, as follows. The last action taken
is itself represented in the bits given to the learning algorithm (since
any new schema created to represent the results of the action just
taken will be a schema mentioning that action, and no other). Since

 

only

 

 the last action taken is so represented to the learning algorithm,

 

only

 

 the last action taken is attended to when attempting to correlate
actions with their results. All other sensory inputs (e.g., propriocep-
tive, visual, etc) are attended to whether or not they have changed re-
cently.

Object
[occasionally 
moved]

"Universe"

Hand
[current location]

Limit of 
possible hand 
positions

Body [immobile]Visual field
[current location]

Object
[occasionally 
moved]

Fovea
[shaded region]

Figure 2. The domain microworld.
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schema is 

 

multimodal

 

 in that it relates a proprioceptive to a
tactile sense; the learning mechanism and its microworld
build many multimodal schema, relating touch to vision, vi-
sion to proprioception, taste to touch (on the mouth), graspa-
bility to the presence of an object near the hand, and so forth.
It also creates 

 

unimodal

 

 schemas of the form illustrated in the
first schema above, which relates proprioception to proprio-
ception.

A schema is deemed to be 

 

reliable

 

 if its predictions of

 

(context, action, result)

 

 are accurate more than a certain
threshold of the time. A schema maintains an 

 

extended

 

 

 

con-
text

 

 and an 

 

extended result

 

 which keep statistics for every
item not yet present in the context or result so as to detect can-
didates for spinning off a new schema. If we already have a
reliable schema, and adding some additional sensory item to
the items already expressed in either its context or its result
makes a schema which appears that it, too, might be reliable,
we 

 

spin off

 

 a new schema expressing this new conjunction.

 

Spinoff schemas 

 

satisfy several other constraints, such as not
ever duplicating an existing schema, and may themselves
serve to be the basis for additional spinoffs later.

The behavior of the world is allowed to be nondetermin-
istic (e.g., actions may sometimes fail, or sensory inputs may
change in manners uncorrelated with the actions being taken),
and each schema also records statistical information which is
used to determine whether the schema accurately reflects a
regularity in the operation of the world, or whether an initial
“guess” at the behavior of the world later turned out to be a
coincidence.

 

4

 

The possible sensory inputs consist of all bits arriving
from the “eye,” proprioceptive inputs from eye and hand
(which indicate where, relative to the body, the eye is point-
ing or the hand is reaching), tactile inputs from the hand, and
taste inputs from the mouth (if an object was in contact with
it). The “eye” reports only whether an object (not 

 

which

 

 ob-
ject, only the presence of one) is in a grid square or not, ex-
cept in its central fovea, where it reports a few additional bits
if an object was present. The “infant” does 

 

not

 

 have a pan-
oramic knowledge of all 49 squares of the universe at once;
at any given instant, it only knows about what the eye can see,
what the hand is touching, or what the mouth is tasting, com-
bined with proprioceptive inputs for eye and hand position. In
particular, certain senses, viewed unimodally, are subject to
perceptual aliasing [Whitehead and Ballard 90]: for example,
if a schema mentions only a particular bit in the visual field,
without also referring to the visual proprioceptive inputs
(which determine where the eye is pointing), then that sche-
ma may be subject to such aliasing. Similarly, any schema
mentioning any visual-field sensory item that is not in the
fovea may alias different objects, since the non-foveal visual
field reports only the presence or absence of an object in each
position, rather than the exact identity of the object in ques-
tion. In Drescher’s original implementation, the system spent
most of its time (a fixed 90%) taking random actions and ob-
serving the results. The remaining 10% of its time was spent

 

4.  We ignore here the details of the statistical mechanism that keeps
the algorithm from being fooled by mere coincidence; see the mar-
ginal attribute mechanism of [Drescher 91].

 

taking actions which had led to some reliable outcome before,
to see if actions could be combined.

 

5

 

3.2 The work of learning

 

Given the action model learning algorithm described above,
at each clock tick, we must first update various statistics re-
flecting what just happened; this is the “perception” part of
the learning algorithm, and a focus mechanism must dictate
which sensory item numbers to pay attention to ( ), for
which schema numbers ( ). Second, we must decide
whether to spin off a new schema; this is the “learning” part
of the algorithm, and here the focus mechanism dictates
which item numbers to check for reliability ( ) for which
schema numbers ( ). Thus, our choice of these four sets
of numbers determines which sensory items and schemas are
used in either updating our perception of the world, or decid-
ing when a correlation has been learned. 

 

Stat

 

i

 

 

 

and 

 

Stat

 

s

 

 deter-
mine the perceptual selectivity, while 

 

Spin

 

i

 

 and 

 

Spin

 

s

 

 deter-
mine the cognitive selectivity.

The algorithm does the vast majority of its work in two
inner loops (one for updating statistics, reflecting what is
currently perceived, and one for deciding whether to spin off
new schemas, reflecting learning from that perception). The
number of items or schemas selected at any given clock tick
determines the amount of work done by the learning algo-
rithm in that tick. Thus, if  is the work done during
the statistical-update part of the algorithm (e.g., perceiving
the world) of any one clock tick, and  is similarly
the amount of work done in deciding which spinoff schemas
to create, then the work done during either one is the product
of the number of items attended to and the number of sche-
mas attended to, or:

This means that the total work per step (clock tick) is
simply the sum of these individual pieces, and that the total
work over many steps is simply the sum of the work during
the individual steps:

Thus, the behavior of 

 

Work

 

Step 

 

over time tells us how well
the algorithm will do at keeping up with the real work, e.g.,
how fast it slows down as the number of iterations, hence
schemas, increases.

A way of evaluating the utility of various algorithms is to
examine the amount of work performed per schema (either
reliable schemas or all schemas; the former being perhaps the
more useful metric):

 

5.  See the composite action mechanism of [Drescher 91].

 

Statistics Spinoffs
Which items?
Which schemas?

Stati
Stats

Spini
Spins

Stati Spini
Stats Spins

WorkStat

WorkSpin

WorkStat Stati Stats•=

WorkSpin Spini Spins•=

WorkStep WorkStat WorkSpin+=

WorkTotal WorkStep
steps
∑=

WorkStepSchemaRel
WorkStep

SchemaRelStep
--------------------------------------=
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which is simply the amount of work performed during
some steps divided by the number of reliable schemas gener-
ated by that work.6 A similar definition for total schemas over
total work is straightforward.7

An algorithm which determines these choices is thus
described by the pairs << , >,< , >>; we
will call each element a selector.

A little more terminology will enable us to discuss the
actual selectors used.  is the number of schemas
currently learned.  is the number of sensory items.

is the value of sensory bit n, and  is the value of
that item at some time t.  denotes some
schema s which is dependent upon (e.g., references in its
context or result) some item i.

3.3 The basic learning algorithm
In Drescher’s basic algorithm, every possible sensory bit be-
fore an action taken by the “infant” was correlated with every
possible sensory bit after the action, for every schema that has
been created so far. In other words, Stati and Spini use the se-
lector all item numbers, or AIN:

and Stats and Spins use the selector all schema numbers,
or ASN:

This means that the basic algorithm does a tremendous
amount of work in the two n x m inner loops, where n is the
size of the set of items in use, , and similarly m is the
size of the set of schemas in use, . Hence,

 

It can eventually learn a large number of facts about the
world in this way, but it runs slowly, and becomes increasing-
ly slow as the number of known facts increases.

3.4 The focused algorithm
Various pruning techniques help a great deal over the basic
approach. The most successful of the approaches, which we
shall call the focused approach, takes the following tack:

• Perceptual selectivity. When updating statistics, only
consider sensory items which have changed very recently
(last two clock ticks) and only in schemas which make
predictions about those items.

• Cognitive selectivity. When deciding whether to spin off
(make a new fact), only consider sensory items which

6.  Note a peculiar detail here. It is possible for a schema that was
formerly thought to be reliable to be later decided to be unreliable.
This could happen if the world has changed in the meantime, or if
some not-very-correct correlation happened often enough to push
the schema over the arbitrary threshold from not being considered
reliable to being considered reliable, and then later data pushed the
schema’s reliability back down. Hence, it is possible for the number
of reliable schemas to decrease during a single step, and this is not
an altogether infrequent occurrence. This means that, while the av-
erage of WorkStepSchemaRel is positive, the instantaneous value
might be negative if Step is a single step or a small number of steps.
7.  Since the total number of schemas (as opposed to reliable sche-
mas) can never decrease, this number must always be nonnegative.

Stati Stats Spini Spins

Schemamax
Itemmax

Itemn Itemn t,
SchemaDepsOni

AIN n 0 n Itemmax≤ ≤{ }=

ASN n 0 n Schemamax≤ ≤{ }=

AIN
ASN

WorkStat WorkSpin AIN ASN•= =

have changed in the last clock tick, and only consider
schemas which have had their statistics changed in the last
clock tick (such schemas can only have had their statistics
changed if they themselves made predictions involving
sensory items which themselves have changed).

Put more precisely, the items used were as follows. Stati
used the all changed items in history, or CINIH selector
(where the word “history” refers to a timeline of prior events,
of some chosen length, and in this case of length 2),

while Spini used a specialization of this, in which the his-
tory is only the very last event, which we shall call the
changed item numbers, or CIN, selector for compactness:

Similarly, the schemas used were as follows. Consider the
set all bare schemas, or ABS, which consists only of sche-
mas which make no predictions about anything (there is one
of these per action at the start of any run, and no other sche-
mas; this is the root set from which new schemas which pre-
dict correlations between actions and sensory inputs may be
spun off):

To define Stats, we add to these schemas dependent
upon changed items, to get:

This selector is a special case of the more general one
(which uses an arbitrary-length history), in that it uses a his-
tory of length 1. The general case, of course, is:

Finally, Spins is defined as schemas with recently updated
statistics, or

Adding these changes amounts to adding some simple
lookup tables to the basic algorithm that track which items
were updated in the last clock tick, and, for each item, which
schemas refer to it in their contexts or results, then using these
tables to determine which sensory items or schemas will be
participants in the statistical update or spinoffs. Such tables
require a negligible, constant overhead on the basic algo-
rithm.

The perceptual and cognitive strategies above place a
high value on novel stimuli. Causes which precede their ef-
fects by more than a couple of clock ticks are not attended to.
In the world described above, this is perfectly reasonable be-
havior. If the world had behaviors in it where more prior his-
tory was important, it would be necessary to attend further
back in time to make schemas which accurately predicted the
effects of actions.

These particular strategies also place a high value on a
very specific spatial locality. Even sensory items that are very
near items which have changed are not attended to. Since this
microworld only has objects which are one bit wide, and the
actions which involve them are, e.g., touch (which requires
contact), this is the right strategy. 8

CINIHH AIN 0 T H≤<( )∃ Itemn t, Itemn t T–,≠{ }∩=

CIN AIN Itemn t, Itemn t 1–,≠{ }∩ CINIH1= =

ABS ASN 0 i Itemmax≤ ≤( ) SchemaDe pnOni¬∀{ }∩=

ABSPSDUCI ABS SchemaDe pnOni CIN∈{ }∪=

ABSPSDUCIIHH ABS SchemaDe pnOni CINIHH∈{ }∪=

SWRUS ASN SchemaDe pnOni i CIN∈( ){ }∩=
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The computational complexity of the  two n x m inner
loops is reduced by these selectors as follows:

In any run which generates more than a trivial number of
schemas or has more than a handful of sensory bits, this is a
dramatic reduction in the complexity, as shown in Figure 4 on
the next page.

4 Results
4.1 Evaluation of the learning
A crucial question that must be addressed concerns what the
system learns, and whether these focus of attention mecha-
nisms impair that learning in any way. After all, one way to
decrease the work of learning would be to simply ignore the
world completely—but the resultant gain in speed could
hardly be said to be worthwhile, because nothing would be
learned.

4.1.1 Were enough correct schemas learned?

The schema system generates thousands of schemas in runs
of reasonable duration, for instance, runs of ten or twenty
thousand iterations have generated over 7000 schemas. How
is one to know what all of these facts really represent? The
state of the knowledge base is critically dependent upon prior
knowledge: a more-detailed schema can only be generated
from a less-detailed one, so any change in the learning mech-
anism which changes which schemas are generated leads to
rapidly-diverging sets of generated schemas. While all may
say approximately the same thing, the fine details of exactly
which facts are learned will tend to be different. It would be
possible to run enough iterations so that almost every possible
fact that is true about the microworld could be learned to be
true, but this is an unreasonably large amount of computation
(the total number of learned schemas plotted over time ap-
pears to have an asymptote at least in the tens of thousands of
schemas, even for this simple world).

4.1.1.1 Manual evaluation methods

Manual inspection of the schemas generated by these runs
was employed as a first cut at establishing that alternative fo-
cus mechanisms were not preventing the learning of crucial

8.  Selectors which attended to the unchanged items in a spatial “ha-
lo” around changed items were found to be less efficient, in terms of
work per reliable schema, than the selectors described here. A differ-
ent microworld (such as one with spatially larger objects, or differ-
ent types of actions available to the agent) might require selectors
that attended to a wider radius of (unchanged) sensory items around
items which actually changed, in which case such “haloing” would
be necessary to reliably learn the effects of actions.

WorkStat CINIH2 ABSPSDUCI•=

WorkSpin CIN SWRUS•=

facts, and tools were developed for examining how many
schemas, representing what general categories of facts (e.g.,
unimodal visual field, multimodal across various modalities,
etc) were being learned. By comparing rough totals of differ-
ent types of generated schemas, one assurance that nothing
critical was being left out could be obtained.

Another manual method of checking the results employed
n-way comparisons of the generated schemas themselves.
The (context, action, result) triple of each schema can be
represented relatively compactly in text (ignoring all the sta-
tistical machinery that also makes up a schema); by sorting
the schemas generated in any particular run into a canonical
order, and then comparing several runs side-by-side, one can
gain an approximate idea of how different runs fared. Figure
3, at the top of this page, demonstrates a tiny chunk from a 5-
way comparison of a certain set of runs, in which 5 some-
what-different runs were compared for any large, overall
changes to the types of schemas generated.

4.1.1.2 Automatic evaluation methods

Manual methods are tedious and error-prone. Furthermore,
the underlying reason that an agent learns is to aid it in the
pursuit of its goal. This means that a sensible evaluation strat-
egy is to ask if the agent has, indeed, learned enough to ac-
complish goals that it was unable to accomplish before learn-
ing.

A simple way to establish what the agent knows is there-
fore to use the generated schemas as parts of a plan, “chain-
ing” them together such that the result of one schema serves
as the context of the next, and to build these chains of sche-
mas until at least one chain reaches from the initial state of the
microworld to the goal state. If we can build at least one such
chain, we can claim that the agent “knows” how to accom-
plish the goal in that context; the shortness of the chain can be
used as a metric as to “how well” the agent knows.9 For this
task, the schemas to be used should be those deemed “reli-
able,” e.g., those which have been true sufficiently often in
the past that their predictions have a good chance of being
correct. Simply employing all schemas, reliable or not, will
lead to many grossly incorrect chains.

At the start, no facts about the world are known, hence no
chain of any length can be built. However, after a few thou-
sand schemas are built (generally between 1000 and 5000),
most starting states can plausibly chain to a simple goal state,

9.   Note that the small size of the microworld and the small number
of actions possible at any given timestep mean that even a random
walk through state space has a significant chance of accomplishing
the goal, if we are willing to wait long enough; hence, a path which
is close to optimal, rather than one which exists at all, should be our
metric for whether learning has succeeded.

_________________________________(-vp02&vp12)/eyer/vp22______________________________________________________________________________________________________________
_________________________________(-vp10&-vf33)/eyef/-vf33_________(-vp10&-vf33)/eyef/-vf33___________________________________________________________________________
___________________________________________________________________________________________________(-vp11&-vf33)/eyer/-fovf01_______(-vp11&-vf33)/eyer/-fovf01_______
___________________________________________________________________________________________________(-vp11&-vf33)/eyer/-fovf23_______(-vp11&-vf33)/eyer/-fovf23_______
___________________________________________________________________________________________________(-vp11&-vf33)/eyer/-vf23_________(-vp11&-vf33)/eyer/-vf23_________
(-vp11&-vf33)/eyer/vf33______________________________________________________________________________________________________________________________________________
(-vp12&-vf20)/eyer/vf33______________________________________________________________________________________________________________________________________________
_________________________________(-vp12&-vf34)/eyef/-vf33_________(-vp12&-vf34)/eyef/-vf33___________________________________________________________________________
___________________________________________________________________________________________________(-vp12&vf22)/eyel/vp12___________(-vp12&vf22)/eyel/vp12___________
_________________________________(-vp20&-vf23)/eyef/-fovf01_______(-vp20&-vf23)/eyef/-fovf01_________________________________________________________________________
_________________________________(-vp20&-vf23)/eyef/-fovf23_______(-vp20&-vf23)/eyef/-fovf23_________________________________________________________________________

Figure 3. A tiny chunk of a 5-way comparison of generated schemas. Five columns of schemas, sorted alphabetically by their printed represen-
tations, are shown here side-by-side, horizontally aligned. Small holes are fine, but large holes could indicate a potentially missing class of schemas. 
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such as centering the visual field over the hand, in a close-to-
optimal number of steps.

Given this mechanism, how well did the focus of attention
mechanisms fare? Quite well. In general, given the same ap-
proximate number of generated schemas, both the basic and
focused approaches cited above learned “the same” informa-
tion: they could both have plausibly short chains generated
that led from initial states to goals. Both the chaining mecha-
nism described above, and manual inspection, showed no
egregious gaps in the knowledge or particular classes or types
of facts that failed to be learned.

As shown in Figure 4 above, and explained in section 4.2
below, the focused approach tended to require approximately
twice as many timesteps to yield the same number of schemas
as the unfocused approach. This means that a real robot which
employed these methods would require twice as many exper-
iments or twice as much time trundling about in the world to
learn the same facts. However, the reduction of the amount of
computation required to learn these facts by between one and
two orders of magnitude means that the processor such a ro-
bot must employ could be much smaller and cheaper—which
would probably make the difference between having it on-
board and not. This is even more compelling when one real-
izes that these computational savings get bigger and bigger as
the robot learns more facts.

4.1.2 Were any incorrect schemas learned?

The existing statistical machinery of the schema mechanism
goes to great pains to avoid being fooled by occasional coin-
cidence. Only if some change in the state of the world is pos-
itively correlated with an action more often than it is nega-
tively correlated, and only if we have seen enough instances
of both the event happening after some specific action and the
event not happening in the absence of the action, and if the
event is unexplainable by any other schemas, will the mech-
anism conclude that the action is truly the cause of the event.
(Further explanation is beyond the scope of this paper; see the
marginal attribution mechanism in [Drescher 91].)

Because of this, the only way that any learning algorithm
which uses this system could learn “incorrect” facts (e.g., cor-
relations that do not, in fact, reflect true correlations in the
world) would be to systematically exclude relevant evidence
that indicates that a schema that is thought to be reliable is in
fact unreliable. No evidence of this was found in spot checks
of any test runs. It is believed (but not proved) that none of
the algorithms here can lead to such systematic exclusion of
relevant information: the mechanism may miss correct corre-
lations (such is the tradeoff of having a focus of attention in
the first place), but it will not miss only the correlations that
would tend to otherwise invalidate a schema thought to be re-
liable.

4.2 Comparison of the strategies
The table above presents partial results from several runs with
different choices of selectors. Only the most salient combina-
tions of selectors were included in this table. Of those, the
rows in boldface will be discussed below; the non-boldfaced
rows are included to give a feel for how different choices can
influence the results.

The results in this table were all produced by runs 5000 it-
erations long. Similar runs of two or three times as long have
produced comparable results.

The first four columns of the table show the particular se-
lectors in use for any given run; the top row shows those se-
lectors which correspond to the basic (Drescher) algorithm,
while the bottom row shows the most highly-focused algo-
rithm, as described in section 3.4 above.

The table is sorted in order by its last column, which
shows number of reliable schemas generated during the en-
tire 5000-iteration run, divided by the amount of total work
required. For conciseness, we shall call the value in this col-
umn , which is defined as:β

Facts  per  work  unit β 
SchemaRel
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Algorithm Learning Work required Facts per work unit
Spinoff selectors Statistic selectors Schemas Inner loops (x10
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) Reliable schemas over
Items Schemas Items Schemas Total Rel T/R Spin Stat Both Spin Stats Both

 

AIN ASN AIN ASN 1756 993 1.77 533 533 1066 1.9 1.9 0.9

 

AIN ASN CINIH ABSPSDUCI 1135 403 2.82 398 12 410 1.0 33.6

 

1.0

 

AIN ASN AIN ABSPSDUCI 1110 518 2.14 391 55 446 1.3 9.4

 

1.2
CIN ASN AIN ASN 1693 948 1.79 44 524 568 21.5 1.8 1.7
CIN SWRUS AIN ASN 1395 791 1.76 2 463 466 316.4 1.7 1.7

 

CIN ABSPSDUCI AIN ASN 1622 924 1.76 15 510 525 61.6 1.8

 

1.8

 

CIN ASN AIN ABSPSDUCI 1110 506 2.19 33 54 87 15.3 9.4

 

5.8

 

CIN ABSPSDUCI AIN ABSPSDUCI 1110 506 2.19 10 54 64 50.6 9.4

 

7.9

 

CIN ABSPSDUCI CINIH ASN 1366 643 2.12 13 64 77 49.5 10.0

 

8.4

 

CIN ASN CINIH ABSPSDUCI 1136 399 2.85 34 12 46 11.7 33.3

 

8.7
CIN SWRUS AIN ABSPSDUCI 1102 498 2.21 1 53 54 415.0 9.4 9.2

 

CIN SWRUS CINIH ASN 1353 688 1.97 2 64 66 275.2 10.8

 

10.3

 

CIN ABSPSDUCI CINIH ABSPSDUCI 1136 399 2.85 10 12 22 40.7 33.3

 

18.3
CIN SWRUS CINIH ABSPSDUCI 1134 398 2.85 1 12 13 331.7 33.2 30.2

 

Figure 4. Various selectors versus number of schemas and total computation, for 5000 iterations.
Bold lines are discussed in section 4.2 (below); the acronyms for the algorithms are defined in sections 3.2-3.4.
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where the multiplication by 10

 

-6 

 

is simply to normalize
the resulting numbers to be near unity, given the millionfold
ratio between work units and number of schemas generated.

The bold rows in the table show successive changes to the
selectors used, one at a time. The top row is the basic algo-
rithm, which shows that about a billion total inner loops were
required to learn 1756 schemas, 993 of which were reliable,
which gives a  of 0.9.

Note that, because the world is stochastic (for example,
the two “inanimate” objects occasionally move from one
square to a neighboring square, approximately every few
hundred clock ticks), one might imagine that there would be
variance in the number and reliability of schemas generated
between two runs, even if they use the same strategy. In fact,
this is true, but the variance is quite low: out of a run of two
or three thousand schemas with the same strategy and differ-
ent seeds for the random number generator (hence different
random behaviors in the world), the difference in the number
of schemas generated is generally less than ten. In other
words, the number of schemas generated is usually within 1%
between runs using the same algorithm. Further, the types of
schemas generated also match each other quite closely, as de-
termined by 

 

n

 

-way comparisons between runs, using the tech-
niques discussed in section 4.1.1.1 above. (The exact sche-
mas generated will, of course, be different, as discussed in
section 4.1.1.)

Let us examine changes to the selectors for spinoffs,
which determine the cognitive selectivity, or what is attended
to in learning new schemas from the existing schemas. When
we change 

 

Spin

 

i

 

 from 

 

AIN

 

 to 

 

CIN

 

, the amount of work drops
by about a factor of two, while the number of generated sche-
mas barely decreases. This means that virtually all schemas
made predictions about items which changed in the immedi-
ately preceeding clock tick (e.g., that corresponding to the ac-
tion just taken), hence looking any further back in time for
them costs us computation without a concomittant increase in
utility.

Changing 

 

Spin

 

s

 

 from 

 

ASN

 

 to 

 

SWRUS

 

, given that 

 

Spin

 

i

 

 is
already using the selector 

 

CIN

 

, yields a small improvement
in  (not visible at the precision in the table), and also a small
improvement in the ratio of reliable to total schemas. (Were

 

Spin

 

i not already CIN, the improvement would be far more
dramatic, as demonstrated in runs not shown in the table.)
Note, however, the enormous decrease in the amount of work
done by the spinoff mechanism when Spins changes from
ASN to SWRUS, dropping from 10% of WorkTotal to 1%.

Next, let us examine the effects of perceptual selectivity.
Changing Stats from ASN to ABSPSDUCI increases  by a
factor of 5.4, to 9.2, by decreasing the amount of work re-
quired to update the perceptual statistics by almost an order
of magnitude. In essence, we are now only bothering to up-
date the statistical information in the extended context or ex-
tended result of a schema, for some particular sensory item in
some particular schema, if the schema depends upon that sen-
sory item.

Finally, examine the last bold row, in which Stati was
changed from AIN to CINIH.  increases by a factor of 3.2,
relative to the previous case, as the amount of statistical-up-

β

β

β

β

date work dropped by about a factor of four. We are now per-
ceiving effectively only those changes in sensory items which
might have some bearing in spinning off a schema which al-
ready references them.

Note that each successive tightening of the focus has
some cost in the number of schemas learned in a given num-
ber of iterations. This means that, e.g., a real robot would re-
quire increasingly large numbers of experiments in the real
world to learn the same facts. However, this is not a serious
problem, since, given the focus algorithm described here,
such a robot would require only about twice as many experi-
ments, for any size run, as it would in the unfocused algo-
rithm. This means that its learning rate has been slowed down
by a small, roughly constant factor, while the computation re-
quired to do the learning has dropped enormously.

5 Discussion and Future Work
Even though it shows promising results, the algorithm dis-
cussed above only represents a small piece of the puzzle. Sev-
eral major topics deserve further attention if this research is
to grow into a more complete model describing focus of at-
tention’s role in learning by an autonomous adaptive agent;
some of these are being addressed in current work.

1. The work reported above demonstrates that large savings
can be obtained even if goals are not incorporated into the
mechanism of focus of attention. A real creature has
short-term goals, which not only inform its choice of ac-
tions, but also help it to decide what is worth learning
about. These short-term goals (such as individual steps to-
ward feeding: searching for food, cleaning the food, etc)
are usually inspired from long-term goals or drives (such
as trying to keep its level of hunger low). We intend to ex-
pand the model discussed above to include goal-based,
domain-independent heuristics for focus of attention. In
particular, we will experiment with the agent also attend-
ing to the sensor data related to the goal (and active sub-
goals) and the internal structures that refer to the goal or
active subgoals. Even though this would make the agent
attend to more items at one time than is currently the case,
we hope to prove that this will improve the overall learn-
ing rate for learning “the facts that matter” (i.e., how to
achieve the goals).

2. The work reported above does not deal with domain-de-
pendent perceptual and cognitive attention. As was al-
ready mentioned in section 2, it is evident that in nature,
creatures have an innate bias towards certain sensor data
or certain internal structures given a goal (drive) and cur-
rent state [Garcia 72].

3. The model of perception in the above model is narrow-
minded. The set of sensor data that the agent tries to cor-
relate with its actions is taken as a given. The system does
not couple learning about actions with learning about per-
ception. It does not learn what to pay attention to or learn
that more features should be paid attention to. Ideally, an
agent would create new features and categories to per-
ceive the environment based on whatever categories its
goals and environment require.

4. Another way in which the model presented above is naive
about perception is that perception is modeled as a pure
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feed-forward process. Given a particular gaze, resulting in
a particular image, the model dictates which sensor items
to prune. We will have to take this further and consider a
model in which the agent can actively seek out the sensor
data that it considers “relevant” at some point in time (i.e.,
relate this to work in active perception [Aloimonos 93]).

6 Related Work
A typical agent in the world cannot perceive every part of the
world at once, nor should it—even “perceiving” without
“learning” is expensive if the agent must perceive everything.
However, not perceiving the whole world at once can lead to
a phenomenon that [Whitehead and Ballard 90] calls percep-
tual aliasing, in which different world states can appear iden-
tical to the agent, and which causes most reinforcement learn-
ing mechanisms to perform poorly or not at all. Both they and
[Woodfill and Zabih 90] propose systems which combine se-
lective visual attention (which is used to “ignore” certain
parts of the world at certain times) with special algorithms to
attempt to overcome the aliasing problem.

[Kaelbling and Chapman 90] propose a technique (the G
algorithm) for using statistical measures to recursively subdi-
vide the world known by an agent into finer and finer pieces,
as needed, making particular types of otherwise intractable
unsupervised learning algorithms more tractable. One could
view that as an example of perceptual selectivity: the agent
gradually increases the set of state variables that are consid-
ered, as needed, when selecting actions and learning (updat-
ing statistics).

[Chapman 90] describes a system that uses selective visu-
al attention to play a video game. Even though the principles
described are general, the particular methods used by his
agent are very domain-dependent (they are specific to the par-
ticular problems his agent faces). Chapman is less concerned
with how focus of attention and learning correlate. Instead he
focuses on how to reduce the problem of perception and the
inferencing problem by the use of visual routines.

Finally, all classifier systems have a built-in mechanism
for generalizing over situations as well as actions and thereby
perform some form of selective attention. In particular, a clas-
sifier may include multiple “don’t care” symbols which will
match several specific sensor data vectors and actions. This
makes it possible for classifier systems to sample parts of the
state space at different levels of abstraction and as such to find
the most abstract representation (or the set of items which are
relevant) of a classifier that is useful for a particular problem
the agent has. [Wilson 85] argues that the classifier system
does indeed tend to evolve more general classifiers which
“neglect” whatever inputs are irrelevant.

It should be mentioned that the methods described in the
core of this paper are likely to be applicable to many other
machine learning systems. While Drescher’s schema system
keeps exhaustive statistics and is thus easy to adapt in the
manner shown, any agent that tries to correlate its actions
with results must keep around some sort of statistics regard-
ing those results from which to learn, even if they are only
available for the instant of perception, and those stored statis-
tics are candidates for pruning. Further, any such agent must

somehow perceive the world, and its sensory inputs are like-
wise candidates for pruning.

For example, the particular “best” strategies chosen here
(bottom line of Figure 4) are likely to be available to most
learning systems operating in a discrete microworld. They re-
quire being able to keep track of which sensory items have
changed recently, and which facts depend upon (e.g., make
predictions concerning) those items. This does not seem an
insurmountable obstacle for many possible algorithms. It is
even possible that particular algorithms which do not possess
absolute knowledge about, for example, which sensory items
are mentioned in any given learned fact (such as the hidden
nodes of a neural net) might nonetheless be able to yield a
probabilistic estimate of how likely it is that some particular
part of the internal knowledge base might depend on a partic-
ular sensory input. If so, such algorithms might also allow
cognitive pruning to take place.

7 Conclusion
Trying to learn every possible fact about the world, without
reference to the utility of those facts or the cost in computa-
tional power to acquire them, is a self-defeating strategy that
leads to systems that require too much computation and
which run too slowly to function adequately in the real world
or on real tasks. Selective perceptual attention and selective
access to relevant memories can be used to reduce the percep-
tual and cognitive load for agents that have to learn from ex-
perience. We have implemented an algorithm for learning ac-
tion models which incorporates a domain-independent set of
heuristics for focus of attention. Experimental results have
demonstrated that this algorithm is significantly more compu-
tationally tractable than its non-focused counterpart and that
it still is able to learn correct knowledge that is relevant.
However, it should be remembered that such focus, as in real
animals, amounts to an engineering tradeoff: in this case, it
took approximately twice as many interactions with the world
to learn the same number of facts.
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