

139

Appendix A: System Architecture

Figure 20, on page 141, summarizes the architecture of the two testbeds built for this

research. In general, the learning system is connected “at arm’s length” to the microworld.

The learning system can only send simple commands (one of a small number of actions) to

the microworld, and it only receives what sensor information the microworld transmits

back. It does not have access to internal microworld state.

The learning system is the same in either scenario. As shown in Figure 20, it contains

the schema system proper (which consists of, essentially, a reimplementation of Drescher’s

schema system [Drescher 91] without certain elements),

1

 plus the goal-independent focus

mechanism described in Chapter 3 and the goal-dependent mechanism described in

Chapter 4. The action selection system picks actions at random in both the unfocused reim-

plementation of the original algorithm and in the goal-independent work described in

Chapter 3, but is informed by the goal system in the further work described in Chapter 4.

In addition, the learning system contains a large amount of diagnostic and performance-

monitoring code, from which the results (in terms of work per schema, etc) described in

this research were derived.

The microworld used in each scenario is, of course, different. In the case of the

infant/eyehand scenario, it runs in the same process as the learning system, though its only

connections to the learning system are via the aforementioned sets of actions and sensory

bits. In this case, the entire system was implemented as a single process in Lisp under Sym-

bolics Genera.

2

 The microworld itself has no sophisticated rendering apparatus; instead,

1. Such as the composite-action system or the mechanism for computing delegated or instrumental value.

140

System Architecture Appendix A

simple character-based diagrams can be produced of its current state for inspection, evalu-

ation, and debugging.

3

In the Hamsterdam scenario, however, the microworld is a separate process, imple-

mented as C and C++ code using SGI Inventor, and runs on a Silicon Graphics worksta-

tion. Hamsterdam includes sophisticated, real-time, three-dimensional graphic rendering.

It communicates with the learning system (in this case, implemented in Harlequin Lisp-

Works and running in a separate process, on either the same machine as Hamsterdam or a

different one) via a network connection consisting of a UNIX TCP socket.

4

 This proved to

be implementationally less than ideal, but of no interest theoretically, because the already-

enforced “arm’s length” relationship between the learning system and any associated

microworld already decreases the possible coupling between the learning system and its

microworld to a very loose connection.

In both cases, the Lisp portion of the system (learning system and microworld in the

infant/eyehand scenario, or the learning system only

5

 in the Hamsterdam scenario) could

be snapshotted to disk and restored later using a component called the

snapshotter

. This

was an implementation convenience to make it easy to duplicate runs with different param-

2. Since the system is coded in Common Lisp, it could run under any Common Lisp implementation, how-
ever. It currently runs under Symbolics Genera and Harlequin LispWorks, and ports to other lisp implemen-
tations would be extremely straightforward.
3. A simple, colorful, graphical representation of this world was also constructed to demonstrate certain
aspects of the early system, but was essentially equivalent to the character-based diagrams in content.
4. Were LispWorks able to directly incorporate the code and libraries of Hamsterdam, the learning system
and Hamsterdam could run in a single process. However, because they were required to run in separate pro-
cesses due to limitations in currently-released versions of LispWorks, there is no reason why any learning
system, running on any other machine, could not be substituted for the current configuration.
5. The state of the Hamsterdam microworld cannot be so preserved in the same fashion, having never been
designed for it. Thus, strict reproducibility of runs in the Hamsterdam scenario is not possible, due to the dif-
fering environments that would be faced even by “identical” runs of the learning system. This makes the
Hamsterdam scenario slightly more difficult for debugging, since events would not always unfold identically
even if the same code were to be run.

141

Appendix A System Architecture

Figure 20: System architecture of both scenarios

In the infant (top) scenario, everything runs in a single process. The
only object under control of the learning system is the infant; the other
objects in the world occasionally move by themselves.

In the Hamsterdam (bottom) scenario, the learning system runs in
one process, and Hamsterdam runs in a separate process. The only
object under control of the learning system is the puppet; the hamsters
and predators are free to wander around autonomously, and do so con-
tinuously.

Disk

Actions

Sensory bits

Lisp proce ss (Symbolics Ge ne ra)

_Microworld

World-state diagrams

World model

Infant Obj 1

Obj 2

Infant/Eyehand scenario

Snapshotter

Actions

Sensor
echo

_Microworld

World model

Puppet H 1

H 2

Hamsterdam scenario Snapshotter

Moves only under control
of learning system

Moves autonomously
()

H 3
Set of possible
next actions

Lisp proce ss (Harle quin LispWorks)

_Learning system

Action
selection

Goal system

Diagnostic
and

performance

Schema
mechanism

Reports, graphs, tables...

Filtering
Rendering

_User interface

C proce ss (SGI Inve ntor) X window

Network connection
(TCP socket)

_Learning system

Action
selection

Goal system

Diagnostic
and

performance

Schema
mechanism

Reports, graphs, tables...

Filtering

Set of possible
next actions

Disk

142

System Architecture Appendix A

eters, or to return to a long run after a reboot, given that the unmodified, unfocused system

could take up to 3-4 days to produce 3000 to 4000 schemas.

6

A communications signature of the interactions between the learning system and any

given microworld is summarized in Figure 21, on page 143. It is expressed in the typical

fashion for network protocols, as a Feynman diagram. In general, there is a lockstep rela-

tionship between an action being requested by the learning system, and the corresponding

sensory bits being returned by the microworld after the action has been performed. This

lockstep relationship, while perfectly reasonable in the infant/eyehand scenario, is less

realistic in a more dynamic microworld, such as that employed in the Hamsterdam sce-

nario.

Because of this difference in microworld characteristics, the communications protocol

employed for the Hamsterdam scenario was slightly modified. An explicit

 null action

, not

present in the infant/eyehand scenario, was introduced. Like any other null action, it is able

to be part of a generated schema. Strictly speaking, such a null action could simply be mod-

elled as an action that never produces any detectable result, except for taking some amount

of time (and, indeed, this is exactly how it was implemented). However, it serves as a

placeholder in the schema system to model the

result of not doing anything

, which is itself

an important concept in a dynamic world.

7

6. While the snapshotter’s contribution was considerable early on in the course of this research, its utility
steadily decreased, because each successive refinement to the learning system, as described in later chapters,
served to increase the speed of the resulting system and thereby decrease both the real time and the compu-
tational work of producing equivalent states. In some cases, when using the most highly-selective learning,
runs of useful size could be produced in an hour or two—a considerable improvement.
7. Consider a robot which must outwit a motion detector. If it never stops and waits, it will never have a
chance to observe the little red light on the motion detector go out. This means it will never be able to corre-
late its motion in the environment with the behavior of the motion detector, since the detector will always be
detecting movement, and the light would always be on.

143

Appendix A System Architecture

Time flows downward in both diagrams. In both scenarios, the learning
system requests an action, has it performed in the microworld, and gets a set
of sensory bits returned. In the Hamsterdam case, an explicit null action is
also possible.

Figure 21: Communication signature for both scenarios

Action

New microworld state

_Microworld

_Infant/Eyehand scenario

_Learning system

Action

New microworld state

t

_Microworld

_Hamsterdam scenario

_Learning system
Action

Sensor echo

Null action

t

Sensor echo

Action

Sensor echo

144

System Architecture Appendix A

By explicitly representing null actions, we allow changing the ratio of the number of

“real” actions performed to the number of “null” actions performed. Let us define this ratio

as follows:

where

A

 is the number of “real” actions taken over some interval, is the number of

“null” actions taken over the same interval, and is therefore a measure of behavior: if

is substantially

less

 than unity, the behavior of the system can be said to be

shy

 or

inhibited

,

whereas if is substantially

greater

 than unity, the system’s behavior can be said to be

out-

going

 or

audacious,

to use some rather anthropomorphic terms. The parameter thus

behaves vaguely like the level of limbic-system activation in the mammalian brain. When

the learning system is outgoing, taking action most of the time and never pausing to watch

the world go by, it can learn a great deal about the effects of individual actions it takes, but

not how the world functions if it were not taking actions at all. Conversely, when the learn-

ing system is shy, not taking action and instead observing how the state of the world

changes when it does nothing, it can learn how doing nothing affects the world.

8

There is a secondary reason why null actions were introduced. The Hamsterdam micro-

world is continually updating its internal state, because its agents operate in real time, and

it must continue to update so as to re-render the scene and preserve the illusion of a

dynamic, changing world. Such updating happens several times a second, which is sub-

stantially faster than the learning system can keep up with the world on the current hard-

8. If the system were provided with a much more sophisticated source of data about the world, which cor-
responded to being told about the actions taken by other agents in the world, it would be possible for it to
learn the correlations between other agents’ actions and their effects. However, no source of data like this
exists in the current scenarios studied; to make such a source available, the control structure of the learning
system would have to be modified to substitute other agents’ actions for its own while computing statistics
and producing schemas. Presumably, the right time to make such a substitution would be when the agent is
otherwise performing a null action, or some action whose result is “overlearned” and hence whose results
are no longer interesting to the learning system.

α A
∅ A
--------=

∅ A

α α

α

α

145

Appendix A System Architecture

ware, even with the improvements described in later chapters. Were the learning system to

accept every update, it would be forced to discard many of them, or it would lag further and

further behind the current state of the world. Yet, the microworld cannot be expected to

know how fast the learning system can run. (Any such attempt would be doomed to failure,

given that the learning system’s running speed varies dramatically based on what sort of

focus it employs and how much it already knows, and because both the learning system and

Hamsterdam are not tied to particular platforms.)

9

Null actions provide an explicit solution to this dilemma. By allowing the learning sys-

tem to dictate exactly when it receives sensory input (it always gets one update after any

action, whether real or null, no more and no less), the learning system polls the microworld

for sensor updates. Therefore, the microworld’s sensor update rate is throttled by the learn-

ing system. This is reasonable, since more-frequent updates would be useless to the learn-

ing system anyway. If the learning system is quite slow in requesting updates compared to

the speed at which the microworld runs, it will miss many important events and may in fact

not learn anything useful. Thus, any real agent employing this approach would have to be

placed in a situation where its cognitive speeds are up to the task of the world with which

it must interact, a familiar problem in both engineering and biology, or would at least

require the ability to be infrequently but quickly interrupted if some high-priority sensory

signal (such as being about to go over a cliff) demanded prompt attention.

9. The learning system can run under Symbolics Genera, at a variety of speeds depending upon the type of
Lisp Machine in use, or under Harlequin LispWorks, again at a variety of speeds depending on the type of
SGI used. Hamsterdam can run on many kinds of SGI platforms, each at a different speed.

