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Chapter 5: Related Work

 

Work in selective attention can draw from two major fields for inspiration and guid-

ance. The first is work in machine learning, primarily that concerned with causal model

builders and active agents, and secondarily passive learners and the reinforcement learning

literature in general.

The second is the study of attentional processes in the cognitive science literature.

There has been considerable work on attention in cognitive science, and the questions

asked and insights gained into attentional processes, while themselves often insufficiently

well-specified to serve as computational theories, may serve as inspiration for approaches

to machine implementation.

 

5.1 Related Work in Machine Learning

 

5.1.1 Introduction

 

As illustrated earlier, a typical agent in the world cannot perceive every part of the

world at once, nor should it—even “perceiving” without “learning” is expensive if the

agent must perceive everything. However, not perceiving the whole world at once can lead

to a phenomenon that [Whitehead and Ballard 90] calls 

 

perceptual aliasing

 

, in which dif-

ferent world states can appear identical to the agent, and which causes most reinforcement

learning mechanisms to perform poorly or not at all. Both they and [Woodfill and

Zabih 90] propose systems which combine selective visual attention (which is used to



 

112

Related Work Chapter 5

 

“ignore” certain parts of the world at certain times) with special algorithms to attempt to

overcome the aliasing problem.

Many of the methods described in earlier chapters may be available to other machine

learning systems, and several such extensions are discussed in later sections. While

Drescher’s schema system keeps exhaustive statistics and is thus easy to adapt in the man-

ner shown, 

 

any

 

 agent that tries to correlate its actions with results must keep around 

 

some

 

sort of statistics regarding those results from which to learn, even if they are only available

for the instant of perception, and those stored statistics are candidates for pruning. Further,

any such agent must somehow perceive the world, and its sensory inputs are likewise can-

didates for pruning.

For example, the techniques used in the most-focused of the goal-independent strate-

gies shown in Chapter 3 (bottom line of Figure 8, on page 63) are likely to be available to

most learning systems operating in a discrete microworld. They require being able to keep

track of which sensory items have changed recently, and which facts depend upon (e.g.,

make predictions concerning) those items. This does not seem an insurmountable obstacle

for many algorithms. It is even possible that particular algorithms which do not possess

absolute knowledge about, for example, which sensory items are mentioned in any given

learned fact (such as the hidden nodes of a neural net) might nonetheless be able to yield a

probabilistic estimate of how likely it is that some particular part of the internal knowledge

base might depend on a particular sensory input. If so, such algorithms might also allow

cognitive pruning to take place.

Selective attention and goal-directed learning have recently been getting considerably

more attention in the literature than previously. Several researchers have advanced frame-

works or architectures for thinking about and taxonomizing such systems, usually based

either upon a model of 

 

filtering

 

 or 

 

discarding

 

 information deemed unnecessary or harmful
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for the learner [Markovitch and Scott 93], or upon explicitly modelling goals, using goals

both to inform the learning process and as input to metareasoning strategies which reason

about the performance of the learner [Ram and Leake 94].

The next few sections will discuss some of these issues. Section 5.1.2, examines the

selective attention side of the issue, and Section 5.1.3, on page 117, addresses goal-

directed learning aspects. 

 

5.1.2 Selective attention as filtering

 

[Markovitch and Scott 93] propose an information filtering framework for evaluating

and specifying selection mechanisms in machine learning systems. As shown in Figure 17,

they propose five different places in which filtering may be employed as a selectional

mechanism:

•

 

Selective experience

 

 reduces the acquisition of knowledge when the num-

ber of possible training experiences is large.

•

 

Selective attention

 

 reduces the acquisition of knowledge when individual

training experiences are complex.

•

 

Selective acquisition

 

 reduces knowledge that has been acquired from some

training example(s) from reaching the permanent knowledge base, but can

be somewhat limited by not knowing how the knowledge might be used.

 

Figure 17: Markovitch and Scott’s information-flow filtering model
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•

 

Selective retention

 

 allows “forgetting” knowledge that will not be worth its

storage cost (or is actively harmful), for any later problem.

•

 

Selective utilization

 

 allows “ignoring” parts of the knowledge base that will

not be useful for solving the current problem.

Using this framework, they summarized several well-known machine learning sys-

tems. Figure 18, on page 115, is from [Markovitch and Scott 93], amended to include the

current research. According to their framework, the work described in previous chapters

employs

 

 selective attention

 

 (in the form of how sensory information is accepted, e.g., sen-

sory pruning) and 

 

selective utilization

 

 (in the form of which schemas are updated or spun

off from, e.g., cognitive pruning). Selective utilization, as is used here, is not often used in

current machine learning systems; IB4 [Aha and Kibler 91] and EGGS [Mooney 89], both

relatively recent systems, make use of it, but few others.

 

1

 

[Kaelbling and Chapman 90] propose a technique (the G algorithm) for using statistical

measures to recursively subdivide the world known by an agent into finer and finer pieces,

as needed, making particular types of otherwise intractable unsupervised learning algo-

rithms more tractable. One could view that as an example of perceptual selectivity: the

agent gradually increases the set of state variables that are considered, as needed, when

selecting actions and learning (updating statistics).

Along these lines, [Moore and Atkeson 93] propose a technique called 

 

prioritized

sweeping

 

. This approach concentrates learning effort in those regions of the world that are

likely to be least well-understood, creating a tree of which questions should be answered

and in what order, and shows promise in substantially decreasing the computational com-

 

1.  In IB4, which functions similarly to memory-based reasoning [Stanfill and Waltz 86], instances which
perform poorly are simply discarded from the database (selective retention), and newly-acquired instances
are prevented from contributing to decisions until sufficient evidence has accumulated to demonstrate that
they are reliable (selective utilization). In EGGS, an explanation-based learner, the system only uses learned
rules that completely solve a problem, and no use is made of learned knowledge to prove subgoals.
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System Filter Description Evaluation Metric

 

Checker Player [Samuel 59] Retention Discards least useful board 
position

Frequency of use

Genetic algorithms 
[Holland 86]

Retention Randomly retains elements 
with probability proportional 
to their fitness

Fitness defined in a domain-spe-
cific manner

MetaDENDRAL [Bucha-
nan and Feigenbaum 82]

Acquisition Attempts to find smallest set of 
rules that accounts for data

Rules that correctly predict 
peaks not predicted by other 
rules score higher

Version Space [Mitchell 82] Experience Chooses experience that will 
reduce version space by great-
est amount

Selects experience that comes 
closest to matching half remain-
ing hypotheses

ID3 [Quinlan 86] Experience Selects only misclassified 
instances

Correctness of classification

INDUCE [Dietterich and 
Michalski 81]

Acquisition Eliminates candidate generali-
zations using several evalua-
tion criteria

Includes coverage, specificity, 
and user defined function

LEX [Mitchell, Utgoff, and 
Banerji 83]

Experience The Problem Generator con-
structs new practice problems

Prefer problems that will refine 
partially learned heuristics

Attention The Critic marks positive and 
negative instances in the 
search area

Select search steps on the lowest 
cost solutions as positive

MetaLEX [Keller 87] Retention Removes subexpressions that 
are estimated to be harmful

A weighted combination of esti-
mated cost and estimated benefit

DIDO [Scott and 
Markovitch 89]

Experience Performs experiments on 
classes with high uncertainty

Prefer experiences involving 
objects of classes with higher 
uncertainties

PRODIGY [Minton 88] Experience Generates experiments when 
discovers incomplete domain 
knowledge

Incompleteness

Attention The OBSERVER selects train-
ing examples out of the trace 
tree

Training example selection heu-
ristics eliminate “uninteresting” 
examples

Acquisition Estimates utility of newly 
acquired control rules and 
deletes those unlikely to be 
useful

Eliminate rules whose cost 
would outweigh saving, even if 
always applicable

Retention Empirical utility validation by 
keeping the running total of 
the costs and frequency of 
application

Estimated accumulated savings 
minus accumulated match cost; 
if negative, discard rule

 

Figure 18: Selection mechanisms in some existing learning systems (Sheet 1 of 2)
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MACLEARN [Iba 89] Attention The macro proposer uses 
peak-to-peak heuristics

Propose only macros that are 
between two peaks of the heuris-
tic function

Acquisition Static filtering; only macros 
estimated to be useful are 
acquired

Redundancy test (primitive) and 
limit on length and domain spe-
cific test

Retention Dynamic filtering; invoked 
manually

Frequency of use in solution

FUNES [Markovitch and 
Scott 88]

Retention Various heuristics to decide 
what macros to delete

Random, Frequency of use x 
Length

CLASSIT-2 [Gennari 89] Attention Attributes with low salience 
are ignored

Salience

Hypothesis Filtering 
[Etzioni 88]

Retention Runs a test on sample popula-
tion; passes only hypotheses 
which are PAC

For a given  and , compute an 
upper bound on the distance 
between the hypothesis and the 
target concept

IB4 [Aha and Kibler 91] Acquistion Acquires misclassified 
instances

Correctness of classification

Retention Removes instances that appear 
to be noisy

Confidence interval of propor-
tions test

Utilization Only instances that have 
proved reliable are used for 
classification

Confidence interval of propor-
tions test

EGGS [Mooney 89] Utilization Learned macros are used only 
if they solve the problem

Macros that do not solve the 
problem are worth nothing

This research [Foner 94] Attention Sensory bits not relevant to 
typical world behavior or cur-
rent goals are not perceived

Spatial and temporal proximity 
(goal-independent); relevance to 
current goal (goal-dependent)

Utilization Schemas which do not make 
predictions concerning cur-
rently useful sensory bits, 
actions, or goals, are not 
updated or spun off

Spatial and temporal proximity 
(goal-independent); relevance to 
current goal (goal-dependent)

 

System Filter Description Evaluation Metric

 

Figure 18: Selection mechanisms in some existing learning systems (Sheet 2 of 2)
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plexity of many common learning situations. They demonstrate it in system that learns a

world model in a world of stochastic Markov chains; it is somewhat similar to DYNA

[Sutton 90] .

As another way to look at the problem, consider classifier systems, such as in

[Holland 86]. Classifier systems have a built-in mechanism for generalizing over situations

as well as actions and thereby perform some form of selective attention. In particular, a

classifier may include multiple “don’t care” symbols which will match several specific

sensor data vectors and actions. This makes it possible for classifier systems to sample

parts of the state space at different levels of abstraction and as such to find the most abstract

representation (or the set of items which are relevant) of a classifier that is useful for a par-

ticular problem the agent has. [Wilson 85] argues that the classifier system does indeed

tend to evolve more general classifiers which “neglect” whatever inputs are irrelevant.

Others have also addressed the problem of finding the proper tradeoff between 

 

effi-

ciency

 

 (the number of measurements a robot must take, for example) and 

 

accuracy

 

 (num-

ber of prediction errors) when attempting to build a world model. For example, [Tan 93]

proposes a unified framework for learning from examples, based on four distinct spaces in

concept learning: example space, feature space, concept space, and concept description

space. This framework is applied to analyzing CS-ID3 and CS-IBL in detail, which are

 

learning-cost-sensitive

 

 (hence “CS-”) algorithms which can trade off accuracy for effi-

ciency in decision-tree-based (CS-ID3) or instance-based (CS-IBL) learning.

 

5.1.3 Selective attention as goal-driven learning

 

There has been considerable work in goal-driven learning in recent years. For example,

Ram, Leake, Cox, and Hunter have between them produced on the order of thirty papers

quite recently which all bear in some way or another on this topic. Some of them are dis-
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cussed below; other relevant papers include [Ram 90a], [Ram and Cox 90], [Cox and

Ram 94], [Ram 90b], and [Cox and Ram  92].

For example, [Leake and Ram 93] describe aspects of goal-directed learning from the

perspectives of AI, psychology, and education in a survey paper that reported on a work-

shop involving participants from all three areas. They summarized four taxonomies of

learning goals: by overarching tasks, by knowledge gap or failure-necessitated learning, by

the learning results, and by the learning activity. They also talk briefly about how goals for

learning arise, how they affect the learning process, how different types of learning goals

relate to each other, and how they are represented.

[Ram and Leake 94] propose a general framework for describing goal-driven learning

systems. This survey paper discusses how goals guide task performance, task learning, and

knowledge storage, with a strong emphasis on using plans to manage the growth of com-

plexity in all these areas. They propose a two-step framework for managing the learning,

in which the first step attempts to reach some particular goal, maintaining a trace of the rea-

soning performed. Plan failures or deficiencies during this reasoning are then used in the

second step, which uses credit/blame assignment to find the source of the failure. Thus,

learning in the second step is guided by a knowledge of 

 

what

 

 must be learned and 

 

why

 

,

stemming from the information resulting from analysis of plan failures. Such explicit rea-

soning about goals is also discussed in [Ram and Hunter 92].

In addition, they point out the importance of 

 

multistrategy learning

 

. Large, compli-

cated learning systems that operate on real-world problems are increasingly being imple-

mented as multistrategy learners. Such a technique allows using the appropriate learning

strategy for the particular piece of the problem which is currently of interest, but are often

hard to control or program without some automated way of determining when to use par-

ticular algorithms. Learning systems that can reason about their goals and use this informa-
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tion to select particular learning modules can make multistrategy learning more feasible. In

addition, they increase the feasibility of systems that can actively seek out additional

sources of information, rather than having to be spoon-fed information from a small num-

ber of hand-picked sources. For example, reasoning involving multistrategy learning is

employed by [Ram, Narayanan, and Cox 93] in a system that learns to troubleshoot and is

based on observations and a model of human operators engaged in a real-world trouble-

shooting task.

In recent work, [Hunter 94] provides two examples of these strategies in action. Both

are drawn from the domain of biology, which is becoming increasingly important as a

source of real-world applications of machine learning due to the large number of interest-

ing datasets, the possibility of external verification and grounding of results via physical

experiments, and the discipline imposed by having to cope with very large and scaled-up

systems from the start. Molecular biology is also increasingly in need of advanced compu-

tational tools to accomplish knowledge discovery.

The first of these examples concerns situations in which there is too 

 

little

 

 data for many

learning systems to operate effectively. Hunter’s example in this case concerns determin-

ing the causes of lethality in osteogenesis imperfecta, a sometimes-fatal bone disorder

involving point mutations in the amino-acid coding sequences for collagen. The dimen-

sionality of the space is vast (approximately 243-dimensional), yet only approximately 70

relevant sequences have been determined from sufferers of the disease. With such a small

dataset, conventional clustering techniques are useless. However, systems such as RELIEF

[Kira and Rendall 92], a Focus/Induce/Extract system, can attempt to eliminate irrelevant

features in the dataset using statistical tests. (The system described uses C4.5 [Quinlan 86]

to extract condition/action rules from the resulting decision trees; see also [Dietterich 89]

and [desJardins 92] for related work.) 
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The system described by Hunter has successfully discovered previously-unknown

information about this disease. It has a large collection of machine-learning algorithms in

it, and determines which of them to use for the part of the problem at hand by consulting

lists of 

 

preconditions

 

 and 

 

applicability

 

 conditions: a tool’s preconditions must be com-

pletely satisfied for it to be eligible, whereas a tool’s applicability conditions are used to

help determine which of the eligible tools to use (in general, the cheapest, fastest such tool

is chosen). 

The second example concerns situations for which there is too 

 

much

 

 data, such as in

megaclustering of protein sequences. The current database set being produced by biolo-

gists consists of approximately 100,000 sequences, comprised of 20 million amino acids,

and doubles about every 18 months. Hunter’s system actively determines, based on the cur-

rent subgoals, which of multiple data sources to contact over the network, how to commu-

nicate with the variety of different databases, what sort of analytical tools should be used

to analyze the data, which platform(s) to use to do so (since some tools require very large

machines, whereas others do not), and so forth. 

This system, too, has discovered new scientific results,

 

2

 

 which is a strong claim of the

utility of the reasoning techniques employed.

 

3

 

In both of these examples, and in the goal-directed learning literature in general, the

problem of learning has been transformed from a search problem to a planning problem. A

naive approach is quite likely to result in simply turning one intractable problem into

another, so this transformation should not devolve into first-principle planning, but should

instead yield what Hunter calls a 

 

discovery strategy

 

, or skeletal plans for learning, an espe-

 

2. Resulting in publications in the biological literature of its discoveries.
3. Hunter also makes the point that such a multistrategy approach is similar in spirit to the multiple-com-
petence-modules model proposed in the Society of Mind [Minsky 86]; this point is taken up again in the
next section.
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cially important feature in learning systems that must query databases—since otherwise

the expected outcome of any plan is sufficiently unpredictable that almost all plans of non-

trivial length will fail.

Such transformations show great promise in making machine learning in large, real-

world problems both tractable and useful in true knowledge discovery applications.

 

5.2 Related Work in Cognitive Science

 

5.2.1 Introduction

 

The cognitive science literature about attentional processes is vast. This overview will

examine some of the high points of that literature that seem most salient and that seem to

be of most utility in producing ideas about implementations of focus of attention in a

machine learning system.

One of the most interesting things about the literature of the last two or three decades

is that many of the same questions have been asked for all that time. It is slowly becoming

apparent that, in some cases, the questions themselves are likely to be misguided; in others,

while it has become clear that certain mechanisms are 

 

not

 

 responsible for attention, it is

still unclear which mechanisms 

 

are

 

.

The confusion exists on many levels, from what constitutes a reasonable theory (e.g.,

there is disagreement about whether it need be computational, in the sense of [Marr 82])

even to simple aspects of terminology (many have railed against the vague use of suppos-

edly well-defined terms, and, amusingly enough, [White 64] dedicates an entire and rather

delightfully readable book to philosophical definitions of terms such as “attention,” “real-

izing,” “noticing,” and so forth).
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Many people have summarized important parts of this literature and the questions sur-

rounding it, with an eye towards computer modeling of the mechanism (one example

would be [Chapman 90]) or to debate and clarify certain of the confusions of the field (see,

for example, Allport’s excellent retrospective [Allport 90]). The debates over whether the

questions even make sense are not particularly new; for example, many of the concepts and

ideas that [Kinchia 80] feels necessary to bury still have enough life in them that

[Allport 90] is still driving stakes through their hearts. [Van der Heijden 92] spends an

entire chapter of a book doing likewise, exploring and denigrating theories such as the

belief in [Broadbent 71] (for example) of 

 

central

 

 and 

 

limited

 

 capacity.

Such guides to the other literature have been very useful in determining how the field

has progressed, and in which directions to proceed in examining this enormous array of

work; in some of the discussion that follows, I am particularly indebted to the keen and

sometimes provocative thinking of Allport and Kinchia.

A large part of the problem with much of the literature on attention is due to its treat-

ment of “attention” as a single, unitary, central process, rather than as a variety of cognitive

mechanisms that mediate human information processing. [Kinchia 80] proposes several

illustrative theoretical processes, summarized as:

•

 

All-or-none attention model

 

, and 

 

weighted integration model

 

. These models

posit a sort of zero-sum information processing paradigm, in which any at-

tention devoted to one stimulus necessarily robs attention from an unattend-

ed stimulus. The former model assumes that this works like a switch—at-

tending to one stimulus essentially completely ignores another stimulus—

whereas the latter assumes a sort of linear transfer function between two

stimuli, where attention can be “shared” between them, albeit with lower

processing efficiency for each.
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•

 

Serial coding models

 

. Many influentual models of perception characterize

the initial internal representation of a stimulus as being held in a sensory

register, which is assumed fairly rich but unprocessed, and which must be

processed relatively quickly lest it decay while in temporary storage in this

register. Some view attention in this regard as a switch [Broadbent 58] or a

filter [Treisman 69] which determine what information was retrieved from

the register for further processing. [Rumelhart 70] characterizes this mech-

anism as a feature-extraction process, in which individual features are seri-

ally extracted and coded from this register.

Note that much of the debate about a single locus of attention seems rooted in more

fundamental conceptions of how the mind works, in areas unrelated to selective attention

per se. There is a long history of dealing with the mind as if it possessed a homunculus

somewhere, leading to theories whose explanatory powers are negligible. Dennett and

Kinsbourne, for example, feel this problem keenly [Dennett and Kinsbourne 92]. In report-

ing research results concerning the perception of subjective time, they spend considerable

effort first demolishing the 

 

Cartesian Theater

 

 model of the mind, in which the mind is pre-

sumed to have some place where “it all comes together.” Their research instead supports

what they call the 

 

Multiple Drafts

 

 model, in which discriminations in multiple modalities

are not registered and synchronized before “presentation” to “consciousness,” but instead

are distributed in both space and time in the brain. The arguments that they present in

demolishing the Cartesian Theater model are of the same sort required to demolish the

“single, serial” model of attentional processes, as delineated below.

Two of the major aspects of the problem concern arguments over 

 

early

 

 versus 

 

late

 

attention (e.g., whether attentional selection occurs before or after stimuli are coded into

categories), and which cognitive processes require attention, and are hence limited by

attention, and which do not. The major thrust of these arguments is to determine possible
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constraints in the processing architecture of the brain, so as to determine the overall and

detailed architecture of how the brain processes information. Unfortunately, many of these

architectural models are imperfect at best, and are surprisingly unhelpful in generating use-

ful architectures with sufficient explanatory power to permit either further analysis of the

system, or its reproduction (e.g., as a program).

The vast majority of studies of attention concentrate on visual attention. Of those, many

are detailed neuroanatomical studies of either humans or other primates (often via lesion

studies or examination of pathological cases). Others are performance tests of healthy

human volunteers. A small percentage deal with auditory attention, with an almost insig-

nificant percentage examining other forms of attention. This means that examples of atten-

tion are heavily biased towards human (or at least primate) visual attention only.

Such studies of attention are examining a system (namely, human cognition) which is

far more complicated than those yet investigated in machine learning. Consequently, while

they serve as interesting inspirations for approaches to try, it is not claimed that the

research in this thesis either explains anything about mammalian visual attention, or that

such studies necessarily will lead to a direct implementation.

 

5.2.2 The plausibility of attention as a system of limitations

 

There is a very widespread view that the need for selective attention stems from funda-

mental limitations in cognitive processing power in particular portions of the brain, and

that, if the brain were to have infinite computational power, such attentional limitations

would be unnecessary. This is argued over a span of decades by [Broadbent 58]

[Broadbent 71] [Broadbent 82], among many others. He and others view attention itself,

therefore, as a limited-capacity system, one which must be shared by many processing

stages and whose capabilities are therefore competed for by various portions of the brain.



 

125

Chapter  5 Related Work

 

This view also espouses that some tasks are “automatic” and hence do not require

attention, presumbly by using portions of the brain whose capacity is not as severely lim-

ited [Kahneman 73]. The appeal of dividing cognition up in this rather intuitive fashion, of

course, is that, if one could identify the bottlenecks, one might begin to get a handle on how

cognition is structured.

Allport [Allport 90] describes Treisman’s feature-integration theory (FIT) [Treisman

and Gelade 80], [Treisman 88] as one of the best-known of the theories that equate atten-

tional mechanisms with intrinsic bottlenecks in processing. It includes careful character-

ization and theoretical arguments that, according to the theory, necessitate serial focusing

on each item to be perceived in turn in order to correctly perceive objects that must be dis-

tinguished by conjunctions of separable features. Yet, immediately after describing Treis-

man’s (and others’) theories of attention, Allport (quite rightly) takes issue with much of

the terminology of the field; even what is meant by the word 

 

selection

 

 is ambiguous: Does

it mean “any task-dependent modulation of sensory neuronal responses?” “Selective facil-

itation?” “Attentional tagging?” “Selective feature integration?” “Entry to a limited-capac-

ity short-term memory store?”

The term 

 

attention

 

 has similar problems in cognitive science: [Johnston and Dark 86]

ask whether attention is some hypothetical causal agency which can be directed or focused

on an entity (with the result that this entity may be “selected”), or an 

 

outcome

 

, characteriz-

ing the behavior of the whole organism. They point out that most current attentional theo-

ries postulate the above hypothetical causal agency, but that there is a great deal of drift

between the two concepts; they also mention that, in most contemporary theories, this

causal agency “has all the characteristics of a processing homunculus,” which does not

help us to understand the underlying mechanisms.
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Many of the assumptions about cognitive architecture adopted by models of attention

appear in the following list, adapted from [Allport 90]:

• Information processing follows a linearly ordered, unidirectional sequence

of processing stages from sensory input to overt response. Parallel or recip-

rocal processing is disallowed in this model.

• Such a sequence is already known, or can be assumed a priori.

• The processing of nonsemantic attributes occurs before processing of se-

mantic attributes.

• Spatial attribute and relation processing logically precedes categorical or

semantic distinctions. There is just 

 

one

 

 locus of attentional selection, hence

it can be 

 

early

 

 or 

 

late

 

, but not both.

• Attentional selection therefore serves as a gate for 

 

any

 

 further processing to

be performed; whatever does not make it past this gate will be remain un-

processed.

• There exists a single “central system” of limited capacity, responsible for all

cognitive processes that “require attention,” which can only be bypassed for

“automatic” processes (defined, of course, as those which do 

 

not

 

 “require

attention”).

I will detail below only a few of the ways in which, as mentioned in the introduction to

this section, this set of assumptions has begun to fall apart. But as an overall trend, there is

growing pressure to develop a theory of attentional selectivity and 

 

control

 

, rather than the

current conception of attention as being a passive information 

 

filter

 

.

Let us start at the top. If processing is inherently serial, why does the brain seem to have

separate processing for “what” versus “where” information? Consider the primate visual

system, composed of at least twenty different modules [Desimone and Ungerleider 89]

[Ullman 91]. These modules can be broadly grouped into the 

 

ventral

 

 system, crucial for
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form-based object recognition, and the 

 

dorsal

 

 system, responsible for spatial vision and

coordination [DeYoe and Van Essen 88] [Ungerleider and Mishkin 82]. This “what” ver-

sus “where” system is quite well established in the literature of visual attention, and poses

a rather embarrassing problem for the “single, serial” assumption above. (Indeed, [Felle-

man and Van Essen 91], to pick only one of many similar papers, demonstrate that among

32 areas that are associated with visual processing in the primate visual cortex, approxi-

mately 40% of all possible connection pathways between the modules actually exist! This

makes cortical visual processing organization look more like a bush than a hierarchical or

serial system, and does not even include the straightforward reciprocal neural connections

in each cortical area; see the discussion immediately below.)

Worse yet, almost everywhere in the cortex, the “forward,” 

 

afferent

 

 connections that

one would expect (leading from the retina toward higher centers of processing) are paral-

leled by equally rich, “backward,” or 

 

efferent

 

 connections [Ullman 91]. If all processing

proceeds in the afferent direction, what are all of those reciprocal connections 

 

doing

 

 there?

Many have proposed ideas: for example, [Mumford 91] proposes that each cortical area is

responsible for updating and maintaining knowledge of a specific aspect of the world, at

any given level from low level raw data to high level abstract representations, and that the

multiple, often conflicting hypotheses which result are integrated by thalamic neurons and

then sent back into the cortex, making the thalamo-cortical loop a sort of “active black-

board” system and thereby explaining the density of reciprocal cortical connections.

Ullman [Ullman 91] has proposed a particularly interesting idea with his sequence-

seeking counterstreams model, in which he posits that the neocortex searches for mappings

between “source” and “target” representations, exploring both “top-down” and “bottom-

up” a large number of alternative sequences in parallel.

 

4

 

 Finally, even though most dia-

grams of the visual cortex show each module interacting with a few nearby ones in a semi-
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well-behaved processing mesh, almost every module 

 

also

 

 has a direct connection (e.g., an

output pathway) to some motor or action system, forming a number of direct, parallel links

between sensory and motor systems that could potentially bypass all levels of higher pro-

cessing [Creutzfeldt 85]. What are those links doing there, if the “single, serial” model is

correct?

It has also been argued by many that tasks conforming to what [Kahneman and

Treisman 84] call the “filtering paradigm,” in which the to-be-selected visual items are

cued by 

 

non

 

spatial visual attributes such as color or size, may instead depend on selective

cueing by 

 

location

 

 [Butler and Currie 86, Johnston and Pashler 90], and that where this

spatial separation is absent, performance drops [Johnston and Dark 86]. This tends to

imply that many “early selection” paradigms of visual attention may instead correspond to

spatial selection.

But the picture is murky even in spatial selection. For one thing, extensive experimen-

tal evidence reveals many 

 

different

 

 coordinate systems and corresponding transformations

along the path from the retinotopic input through the cortex. For example, [Allport 90] pro-

vides a virtual laundry list of such transformations, mentioning some that take account of

eye and head position, some that code location in terms of arm- or body-centered coordi-

nates, and some based on environment- and perhaps object-centered coordinate systems; a

small sampling of work in this area can be found in [Andersen 87] [Andersen 89] [Ellis et

al 89] [Feldman 85] [Hinton and Parsons 88] [Marr 82] [Soechting, Tillery, and

 

4. Such counterstream architectures, if they exist in the brain at all, may no longer be unique to it, how-
ever. Bob Sproull of Sun Microsystems has proposed [Sproull 94] a novel, “counterflow pipeline” architec-
ture for advanced, pipelined RISC CPU’s which shares many remarkable features with Ullman’s
counterstreams model of processing. Instructions and results propagate in opposite directions in a processing
ladder, interacting with each other as they pass, and employ only local interaction (e.g., only within a ladder
level, or between two adjacent rungs of the ladder). Such a design also admits an asynchronously-clocked
implementation, making it more similar to possible cortical models such as Ullman’s. However, the intersec-
tion between cognitive science and machine architecture is understandably not what it could be: neither Ull-
man nor Sproull had heard of the other’s work.
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Flanders 90] [Zipser and Andersen 88]. This does not even include the many lesion studies

which investigate neglect in various coordinate systems after brain damage.

If recent results seem to put nails in the coffin of attention as a serial, feedforward,

strictly limitation-based strategy, what models are proposed instead? [Allport 90] argues

that the influence of attention in noncategorical, spatial-vision systems is of the form of

 

enhancement

 

 of neuronal responsiveness in attended locations, rather than attentuation of

unattended locations, and that many results involving delays in attending to stimuli reflect

the time cost of disengagement from the cued location, rather than withdrawal of process-

ing resources from the uncued location. (He also notes work, such as [Driver and

Tipper 89], which points out the problems with equating “no processing” and “no interfer-

ence.”)

Indeed, lesion studies such as in dorsal simultanagnosia, in which the patient perceives

only one part of any given object even though his visual field is often full and complete,

seem to indicate that such damage leads to an inability to 

 

disengage

 

 from one part of the

visual field in order to shift attention to a different part of it: unilateral lesions

[Posner et al 87] [Morrow and Ratcliff 88] can lead to problems shifting attention to the

contralateral side, and full simultanagnosia can lead to problems shifting attention in 

 

any

 

direction [Luria et al 63].

Viewing attentional processes as a process involving commitment of resources, rather

than filtering, leads [Crick and Koch 90], for example, to suggest that attention facilitates

local competition among neurons: in other words, when a local group of neurons is not

attended to, it can have multiple (ambiguous) outputs, but attention then narrows down the

possible outputs, forcing disambiguation. This view of attention is quite different from that

of protecting the limited computational power of a single center from overload.
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This argument for a multiplicity of attentional mechanisms, each “specialists” in a par-

ticular cognitive area, fits in nicely with the Society of Mind hypothesis [Minsky 86].

While Minsky posits that many of the aspects of attention have to do with limits (e.g., lim-

itations in processing leading to the intuitively serial feeling of thought, or limitations in a

particular agent’s ability leading to inability in tracking multiple locations simultaneously),

the theory does not say that there is a 

 

single

 

 limit anywhere—only that different agents will

likely contribute different limitations.

The existence of multiple loci of attentional control are reinforced dramatically by

[Mangun, Hillyard, and Luck 90], who use a combination of MRI brain images, behavioral

data, and event-related brain potential mapping. While this research comes down rather

strongly on the side of “early” selection (since the effects cited occur very quickly, within

150 msec), [Sperling, Wurst, and Lu 90] introduce a new theoretical construct, attentional

“tags,” through which visual item traces may be selected from short-term memory, rather

than positing a single filter. Such an interpretation is completely in support of multiple loci

of attentional control.

It is interesting to note that the majority of even current work in the machine learning

community still treats attention as a single, serial pathway, and structures its systems

accordingly. (See, for example, Figure 17, on page 113, from [Markovitch and Scott 93],

and the discussion in Section 5.1, on page 111.) 

One reason for this might be that current machine learning systems are still too primi-

tive to take advantage of architectures rich in reciprocal connections, or that contain multi-

ple loci of control or information processing. For example, the bulk of this thesis concerns

itself with single-agency pruning, of the type of “limitations and bottleneck” school so den-

igrated above. In addition, the sensory and cognitive system modelled in this research is

greatly simplified compared to even the most rudimentary levels of human cognition;
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many insects might have more sensory processing abilities, and even the simplest mammal

must be better at memory and generalization.

 

5

 

Just because the evidence for a single, serial control of attention no longer appears to

be compelling is no reason, of course, to discount much of the work that has been done in

attention. While it may not be the case that an explanation of one particular aspect of atten-

tion explains all of attention (either in that modality or others), there are many probably-

correct explanations of parts of the attention puzzle. Unfortunately, few have implemented

their theories, possibly because many of them are insufficiently precisely described for

such implementation. This makes it even more difficult to determine which theories might

be correct.

For example, [Chapman 90] cites several aspects of visual attention, such as results in

covert attention [Posner et al 80], and the winner-take-all addressing pyramid in [Koch and

Ullman 85] in support of visual spotlight search behavior. [Treisman and Gormican 88]

have done extensive research on visual pop-out behavior in visual search routines; for sur-

veys of visual search in general, see [Julesz 84] and [Treisman and Gelade 80]. But Koch

and Ullman did not implement their theory; in fact, Chapman’s work is one of the few to

implement several subtheories of visual attention.

It may be, as machine learning systems become more sophisticated, employing multi-

ple processing strategies in a richly-connected information architecture, that they will be

better positioned to take advantage of current thinking about attention in cognitive science.

 

5. Although the lack of generalization in the schema system, as currently designed, does seem to put it on
a par with certain insects. For example, bees apparently remember places retinotopically—if they learn a
shape with one part of their eye, they can only recognize it again with that same part [Christensen 94]. Bees,
which have magnetite in their abdomens as part of their navigation system, face magnetic south (or magnetic
northwest in certain cases in which south is infeasible) when encountering and departing targets of interest.
By doing so, they can image the target in the same orientation; rather than rotating a mental representation of
the target, they simply rotate their real eyes instead until a match is acquired. Artificially imposed external
magnetic fields lead to predictable perturbances of this behavior.
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Organizations such as the subsumption architecture [Brooks 86], for example, or the Soci-

ety of Mind [Minsky 80] seem as if they will be logical computational testbeds for imple-

menting computational verification of multiple-loci attentional models. 

Indeed, as shown by the some of the systems mentioned in Section 5.1.3, particularly

the multistrategy systems of Hunter, Ram, Cox, and others, the increasing complexity of

modern learning systems is forcing implementations of the control of their attentional

focus down just the sort of pathways that the multi-locus models of modern cognitive sci-

ence might lead one to expect.


