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Chapter 3: Goal-independent Learning

 

This research started with an existing learning algorithm [Drescher 91], and added a

focus of attention mechanism, as described below, to make learning faster (requiring less

computation per timestep). While Drescher’s original work does include a concept similar

to both tactical and strategic goals, his system does not exploit goals to guide the learning

process. Further, it has no perceptual selectivity and assumes that every sensory bit might

be useful all the time.

 

1

 

 This approach leads to a theoretically “pure” result for the issues

which Drescher was investigating, but one which is difficult to use in a real application,

and which seems somewhat implausible in describing how real organisms learn.

The following discussion is an overview of the operation of the schema system; for a

much more complete and detailed explanation of its intricacies, see [Drescher 91] and

[Ramstad 92].

 

3.1 Model of the learning system

 

This section presents a very brief overview of the schema system [Drescher 91] to aid

in understanding the focused and unfocused learning algorithms presented later. The

schema system is designed to be used in building causal models of the results of actions.

 

1. With one very small exception, as follows. The last action taken is itself represented in the bits given to
the learning algorithm (since any new schema created to represent the results of the action just taken will be
a schema mentioning that action, and no other). Since 

 

only

 

 the last action taken is so represented to the
learning algorithm, 

 

only

 

 the last action taken is attended to when attempting to correlate actions with their
results. All other sensory inputs (e.g., proprioceptive, visual, etc) are attended to whether or not they have
changed recently.
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Hence, it is designed to be hooked up to some agent which is situated in an environment,

and which has some sensory inputs and motor outputs.

 

3.1.1 The sensory system: Items

 

Every sensory item is represented in the simulation as a single bit. In Drescher’s origi-

nal algorithm, there is no grouping of these bits in any particular way (e.g., as a retinotopic

map, or into particular modalities); the learning algorithm sees only an undifferentiated

“bag of bits.”

This means that values in the world which are not simple binary bits must somehow be

turned into individual bits. Ranges, for example, are most usefully represented as a set of

bits, any one of which would be asserted when the value is within some particular interval

of the range.

 

2

 

3.1.2 The motor system: Actions

 

The schema system assumes a known, fixed number of possible actions that the agent

may take. It takes one of these actions at every timestep of the simulation, and observes

which sensory items have changed after the action.

In Drescher’s original implementation, the system spent most of its time (a fixed 90%)

taking random actions and observing the results. The remaining 10% of its time was spent

taking actions which had led to some reliable outcome before, to see if actions could be

chained.

 

3

 

 The work reflected in this chapter instead represents a totally random action

selection strategy: the agent always picks its next action at random. In Chapter 4, in the

 

2. There is no particular reason why such range values could not be represented instead as, e.g., a binary
number. However, such a representation, though more compact in terms of the number of sensory bits,
would be somewhat slower to learn, since a schema (see Section 3.1.3) which made accurate predictions
about the value might have to have a conjunctive context or result (see Section 3.1.3.2.6) which completely
specified all 

 

n

 

 bits of the number. Generating such conjunctions would be quite timeconsuming.
3. See the composite action mechanism of [Drescher 91].
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context of goal-directed focus of attention, we also investigate less random and more goal-

oriented action selection strategies.

 

3.1.3 The knowledge base: Schemas

 

3.1.3.1 What is a schema?

 

The “facts” learned by this system are called 

 

schemas

 

. They consist of a triple of the

 

context

 

 (the initial state of the world, as perceived by the sensory system), the 

 

action

 

 taken

on this iteration, and the 

 

result

 

 (the subsequent perceived state), which maps actions taken

in a particular configuration of sensory inputs into the new sensory inputs resulting from

that action. In the infant/eyehand scenario, a typical schema might therefore be, “If my

eye’s proprioceptive feedback indicates that it is in position (2,3) [

 

context

 

], and I move my

eye one unit to the right [

 

action

 

], then my eye’s proprioceptive feedback indicates that it is

in position (3,3) [

 

result

 

].” A simple textual way of representing this would be

 

VP

 

23/

 

EYER

 

/

 

VP

 

33, as described in [Drescher 91] and [Ramstad 92].

Another typical schema might be, “If my hand’s proprioceptive feedback indicates that

it is in position (3,4) [

 

context

 

], and I move it one unit back [

 

action

 

], I will feel a taste at my

mouth and on my hand [

 

result

 

],” or 

 

HP

 

34/

 

HANDB

 

/

 

TASTE

 

&

 

TACT

 

.

 

4

 

 Notice that this latter

schema is 

 

multimodal

 

 in that it relates a proprioceptive to taste and tactile senses; the learn-

ing mechanism and its microworld build many multimodal schemas, relating touch to

vision, vision to proprioception, taste to touch, graspability to the presence of an object

near the hand, and so forth. It also creates 

 

unimodal

 

 schemas of the form illustrated in the

first schema above, which in this case relates proprioception to proprioception.

Since behavior of the world may be nondeterministic (e.g., actions may sometimes fail,

or sensory inputs may change in manners uncorrelated with the actions being taken), each

 

4. This is because the hand will move from immediately in front of the mouth to in contact with the mouth.
We assume that the infant’s mouth is always open, which seems empirically reasonable for most infants.
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schema also records statistical information which is used to determine whether the schema

accurately reflects a regularity in the operation of the world, or whether an initial “guess”

at the behavior of the world later turned out to be a coincidence. (For details about how this

actually works, see the next section.) This information is recorded in a schema’s 

 

extended

context

 

 and an 

 

extended result,

 

 which keep these statistics for every item not yet present in

the context or result.

 

3.1.3.2 How are schemas created? The marginal attribution mechanism

 

A schema is deemed to be 

 

reliable

 

 if its predictions of 

 

(context, action, result)

 

 are

accurate more than a certain percentage of the time. If we already have a reliable schema,

and adding some additional sensory item to the items already expressed in either its context

or its result makes a schema which appears that it, too, might be reliable, we 

 

spin off

 

 a new

schema expressing this new conjunction.

 

5

 

 

 

Spinoff schemas 

 

satisfy several other con-

straints, such as not ever duplicating an existing schema, and may themselves serve to be

the basis for additional spinoffs later.

The description below, until the end of this section (Section 3.1.3.2), is quoted with a

few modifications from [Ramstad 92]; that description, in turn, was a summarization of

[Drescher 91]. See the latter in particular for more depth on the subtleties of the schema

system and marginal attribution in particular; this description, being a summary, glosses

over particular refinements which prevent certain combinatorial explosions.

 

5. For example, consider the schema 

 

VF

 

33/

 

EYER

 

/

 

FOVF

 

22, which states that, if a particular coarse visual
field bit (the one at 3,3) is on, and the agent moves the eye right, it will see a particular fine foveal visual bit
turn on (the one at 2,2). If this schema is sufficiently reliable, and it also seems from experience that 

 

VF

 

32 is
usually off just before we take this action in this case, the schema system might spin off the schema

 

¬

 

VF

 

32&

 

VF

 

33/

 

EYER

 

/

 

FOVF

 

22 from the original schema. (Note that the notation often used in, e.g.,
[Ramstad 92] would say -

 

VF

 

32 instead of 

 

¬

 

VF

 

32; we use both forms interchangeably here.) While the 

 

origi-
nal

 

 schema must be deemed reliable to be considered for a spinoff (to prevent combinatorial explosion), the

 

new

 

 one is not yet known to be reliable, and will itself be considered a spinoff candidate only if it, too, is
later shown to be reliable.
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3.1.3.2.1 Bare schemas

 

Schemas are bootstrapped from an initial set of 

 

bare

 

 schemas, which have neither con-

text nor result and hence do not predict anything. There is one bare schema for each action

that can be taken.

As the simulation is run, a technique known as 

 

marginal attribution

 

 is used to discover

statistically important context and result information. This information is then used to fine-

tune existing schemas by creating modified versions of them. Marginal attribution suc-

ceeds in greatly reducing the combinatorial problem of discovering reliable schemas from

an extremely large search space without prior knowledge of the problem domain.

 

3.1.3.2.2 Result spinoffs

 

Many different results may occur from the execution of a given action. For every 

 

bare

 

schema, the schema mechanism tries to find result transitions which occur more often with

a particular action than without it. For example, a hand ends up closed and grasping an

object much more often when the 

 

grasp

 

 action is taken than with any other action. Results

discovered in this fashion are eligible to be included in a 

 

result spinoff

 

—a new schema

identical to its parent, but with the relevant result item included. The marginal attribution

process can only create result spinoffs from bare schemas.

Specifically, each bare schema has an 

 

extended result

 

—a structure for holding result

correlation information. The extended result for each schema keeps correlation informa-

tion for each item (primitive or synthetic). The positive-transition correlation is the ratio of

the number of occurrences of the item turning on when the schema’s action has been taken

to the number of occurrences of the item turning on when the schema’s action has not been

taken. Similarly, the negative-transition correlation is the ratio of the number of occur-

rences of the item turning off when the schema’s action has been taken to the number of

occurrences of the item turning off when the schema’s action has not been taken. Note that



 

44

Goal-independent Learning Chapter 3

 

an item is considered to have turned on precisely when the item was off prior to the action

and on after the action was performed, and similarly for turning off. The correlation statis-

tics are continuously updated by the schema mechanism and weighted towards more recent

data. When one of these schemas has a sufficiently high correlation with a particular item,

the schema mechanism creates an appropriate result spinoff—a schema with the item pos-

itively included in the result if the positive-transition correlation is high, or a schema with

the item negatively included in the result if the negative-transition correlation is high.

These simple statistics are very good at discovering arbitrarily rare results of actions, espe-

cially when the statistics of the non-activated schemas are only updated for 

 

unexplained

 

transitions. A transition is considered explained if the item in question was included in the

result for an activated schema with high reliability (above an arbitrary threshold) and it did,

in fact, end up in the predicted state.

 

3.1.3.2.3 Context spinoffs

 

For schemas which have non-negligible results, the marginal attribution mechanism

attempts to discover conditions under which the schema obtains its result more reliably. To

extend the example cited above, a hand ends up closed and grasping something much more

often an object can be felt touching the correct part of the hand before the grasp action is

executed. This information is used to create 

 

context spinoffs

 

—duplicates of the parent

schema, but with a new item added to its context.

Schemas with non-empty results have an 

 

extended context

 

. For each item, this structure

keeps a ratio of the number of occurrences of the schema succeeding (i.e., its result obtain-

ing) when activated with the item on the number of occurrences of the schema succeeding

when activated with the item off. If the state of a particular item before activation of a given

schema does not affect its probability of success, this ratio will stay close to unity. How-

ever, if having the item on increases the probability of success, the ratio will increase over
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time. Similarly, if having the item off increases the probability of success, the ratio will

decrease. If one of these schemas has a significantly high or low ratio for a particular item,

the schema mechanism creates the appropriate 

 

context spinoff

 

—a schema with the item

positively included in the context if the ratio is high, or one with the item negatively

included if the ratio is low.

There is an embellishment to the process of identifying context spinoffs. When a con-

text spinoff occurs, the parent schema resets all correlation data in its extended context, and

keeps an indication of which item (positively or negatively included) was added to its

spinoff child. In the future, when updating the extended context data for the parent schema,

if that item is on (if positively included in the spinoff) or off (if negatively included in the

spinoff), the trial is ignored and the extended context data is not modified. This embellish-

ment means that the parent schema has correlation data only for those trials where there is

no more specific child schema, and it encourages the development of spinoff schemas from

more specific schemas rather than general schemas.

Redundancy is also reduced by a further embellishment. If, at a particular moment in

time, a schema has multiple candidates for a context spinoff, the item which is on least fre-

quently is the one chosen for a context spinoff. The system keeps a 

 

generality

 

 statistic for

each item which is merely its rate of being on rather than off—it is this statistic which is

used when deciding between multiple spinoff possibilities. This embellishment discour-

ages the development of unnecessary conjunctions when a single specific item suffices.

 

3.1.3.2.4 Conjunctive contexts and results

 

The context can be iteratively modified through a series of context spinoffs to include

more and more conjuncts in the context. For a variety of reasons, but primarily to avoid

combinatorial explosion, a similar process for result conjunctions is undesirable. The mar-

ginal attribution process therefore requires that result spinoffs occur only from bare sche-
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mas, and only one relevant detail can be detected and used as the result for the spinoff

schema. However, conjunctive results are necessary if the schemas should be able to 

 

chain

 

to a schema with a conjunctive context. (See Chapter 4 for much more about chaining

schemas.) This problem is solved by adding a slot to the extended result of each bare

schema for each of the conjunctions of items which appear as the context of a highly reli-

able schema. Statistics are kept for these in the same fashion as those kept for single items,

and if one of these conjunctions is often turned on as the result of taking a given action, a

result spinoff occurs which includes the entire conjunction in the result. Effectively, this

process is able to produce schemas with conjunctive results precisely when such schemas

are necessary for chaining.

 

3.1.3.2.5 Summary of marginal attribution

 

Schemas created by the marginal attribution process are designed to either encapsulate

some newly discovered piece of knowledge about causality in the microworld (result

spinoff), or to improve upon the reliability of a previous schema (context spinoff). By con-

tinuously creating new versions of previous schemas, the system iteratively improves both

the reliability and the scope of its knowledge base. It is interesting to note that, once cre-

ated, a schema is never removed from the system. Rather, it may be supplanted by one or

more spinoff schemas which are more 

 

useful

 

 due to higher reliability and greater specific-

ity.

 

3.1.3.2.6 Synthetic items

 

The schema system also defines many other concepts; we mention here briefly one

other, namely 

 

synthetic items

 

, that will become more important in Section 4.4.2, on

page 95. This section can safely be skipped, at least until then, without loss of continuity.

There are certain concepts that primitive items are unable to express, for example, that

a particular object is present at a particular location while the glance orientation is such that
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the object is out of view. The schema mechanism contains a facility for building 

 

synthetic

items

 

—items which, when on, indicate that a particular unreliable schema, if activated,

would succeed. Suppose a schema saying /[

 

MOVE

 

 

 

GLANCE

 

 

 

ORIENTATION

 

 

 

TO

 

 

 

VP

 

01]/

 

VOVF

 

02

(note that this schema has no context) is very reliable if some object in the microworld is

in the correct position. However, this object spontaneously moves around between a few

different positions and so, on average, is only in the correct position some of the time.

Notably, this schema, if activated and successful, will continue to be very reliable for some

period of time (equal to the duration that the object remains in that position), even though

on average it is normally not very reliable. To discover such situations, the schema mech-

anism keeps a 

 

local consistency

 

 statistic which indicates how often the schema succeeds

when its last activation was successful. If a schema is unreliable but highly locally consis-

tent, the mechanism constructs a synthetic item—an item which, when on, indicates that

the schema (its 

 

host schema

 

), if activated, would succeed. Effectively, such an item, when

on, predicts what the result of activating the host schema would be. For a variety of reasons

(see [Drescher 91]), synthetic items are fundamentally very different from primitive items

and express concepts which are inexpressible through any conventional combination of

primitive items.

Primitive items get their state directly from the microworld. On the other hand, the

schema mechanism itself must maintain and update the state of all synthetic items. (The

rules for how this update is accomplished are complicated and not explained here.) The use

of synthetic items effectively allows the schema mechanism to invent new concepts—con-

cepts which are not expressed well by the microworld or cannot be expressed by conjunc-

tions of boolean values at all.



 

48

Goal-independent Learning Chapter 3

 

3.2 Improving learning via focus

 

If we are to talk about improving the computational effort of learning, we must first be

clear about what happens during learning, and how to describe how much work is per-

formed for various modifications of the basic learning algorithm.

 

3.2.1 The work of learning

 

Given the action model learning algorithm described above, at each clock tick, we must

do two things:

• First, we must update various statistics reflecting what just happened; this is

the “perception” part of the learning algorithm. A focus mechanism dictates

which sensory items will be attended to

 

6

 

 ( ), for which schema num-

bers ( ).

• Second, we must decide whether to spin off a new schema; this is the

“learning” part of the algorithm, and here the focus mechanism dictates

which item numbers to check for reliability ( ) for which schema num-

bers ( ). 

Thus, our choice of these four sets of numbers determines which sensory items and

schemas are used in either updating our perception of the world, or deciding when a corre-

lation has been learned. 

 

Stat

 

i

 

 

 

and 

 

Stat

 

s

 

 determine the perceptual selectivity, while 

 

Spin

 

i

 

 and

 

Spin

 

s

 

 determine the cognitive selectivity of the agent, as shown in the table below)

 

6. In other words, will have their associated statistics reflecting frequency of occurrence updated in all
schemas which mention them.

 

Statistics Spinoffs
Which items?
Which schemas?

Stati

Stats

Spini

Spins

Stati Spini
Stats Spins
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The algorithm does the vast majority of its work in two O(n2) loops (one loop for

updating statistics, reflecting what is currently perceived, and one loop for deciding

whether to spin off new schemas, reflecting learning from that perception). The number of

items and the number of schemas selected at any given clock tick determines the amount

of work done by the learning algorithm in that tick. Thus, if  is the work done

during the statistical-update part of the algorithm (e.g., perceiving the world) of any one

clock tick, and  is similarly the amount of work done in deciding which spinoff

schemas to create, then the work done during either one is the product of the number of

items attended to and the number of schemas attended to, or:7

This means that the total work per step (clock tick) is simply the sum of these individ-

ual pieces, and that the total work over some particular number of steps is simply the sum

of the work during the individual steps:8

Thus, the behavior of WorkStep over time tells us how well the algorithm will do at

keeping up with the real work, e.g., how much it slows down as the number of iterations

(which is proportional, though not in a particularly simple way, to the number of schemas)

increases.

7. Where  denotes the cardinality of the set x.
8. There is no particular end to this series of learning steps. In this research, the number of steps taken was
limited by the amount of time available to learn, or by the approximate number of schemas that were desired
for a run, and so forth. In a real agent, we might turn off the learning system once the agent has shown that it
is competent (see Chapter 4) to perform some set of tasks—or not. After all, if we were ever to turn off the
learning system, the agent would fail to change its internal world model even if the external world were to
change.

WorkStat

WorkSpin

x

WorkStat Stati Stats•=

WorkSpin Spini Spins•=

WorkStep WorkStat WorkSpin+=

WorkTotal WorkStep
steps
∑=
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The discussion above looked at the work per step, e.g., per clock tick of the simulation.

Another way of evaluating the utility of the various algorithms is to examine the amount of

work performed per schema learned (either reliable schemas or all schemas; the former

being perhaps the more useful metric):

which is simply the amount of work performed during some steps (WorkStep) divided

by the number of reliable schemas generated by that work (SchemaRelStep).9 A similar def-

inition for total schemas over total work is straightforward:10

An algorithm which determines these choices is thus described by the pairs

<< , >,< , >>; we will call each element a selector.

A little more terminology will enable us to discuss the actual selectors used.

 is the number of schemas currently learned.  is the number of sen-

sory items.  is the value of sensory bit n, and  is the value of that item at some

time t.  denotes some schema s which is dependent upon (e.g., refer-

ences in its context or result) some item i.

9. Note a peculiar detail here. It is possible for a schema that was formerly thought to be reliable to be later
decided to be unreliable. This could happen if the world has changed in the meantime, or if some not-very-
correct correlation happened often enough to push the schema over the arbitrary threshold from not being
considered reliable to being considered reliable, and then later data pushed the schema’s reliability back
down. Hence, it is possible for the number of reliable schemas to decrease during a single step, and this is
not an altogether infrequent occurrence. This means that, while the average of WorkStepSchemaRel is posi-
tive, the instantaneous value might be negative if Step is a single step or a small number of steps.
10. Since the total number of schemas (as opposed to reliable schemas) can never decrease, this number
must always be nonnegative.

WorkStepSchemaRel
WorkStep

SchemaRelStep
--------------------------------------=

WorkStepSchemaTotal
WorkStep

SchemaTotalStep
-------------------------------------------=

Stati Stats Spini Spins

Schemamax Itemmax

Itemn Itemn t,

SchemaDepsOni
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3.2.2 The basic learning algorithm

In Drescher’s basic algorithm, every possible sensory bit before an action taken by the

“infant” was correlated with every possible sensory bit after the action, for every schema

that has been created so far. In other words, Stati and Spini use the selector all item num-

bers, or AIN:

, where

and Stats and Spins use the selector all schema numbers, or ASN:

, where

This means that the basic algorithm does a tremendous amount of work in the two n x m

inner loops, where n is the size of the set of items in use, , and similarly m is the size

of the set of schemas in use, . Hence,

 

This algorithm can eventually learn a large number of facts about the world in this way,

but it runs slowly, and becomes increasingly slow as the number of known facts (e.g., sche-

mas) increases. Furthermore, if we were to increase the number of sensory bits available

(e.g., by putting a higher-resolution camera in an agent using this technique), the work

involved would increase in direct proportion to the number of added sensory bits, even if

none of these bits ever changed.

Stati Spini AIN= =

AIN n 0 n Itemmax≤ ≤{ }=

Spini Spini ASN= =

ASN n 0 n Schemamax≤ ≤{ }=

AIN

ASN

WorkStat WorkSpin AIN ASN•= =



52

Goal-independent Learning Chapter 3

3.2.3 The focused algorithm

Various pruning techniques help a great deal over the basic approach. The most suc-

cessful of the approaches examined, which we shall call the focused algorithm, takes the

following tack (why these particular parameters were chosen is explained at the end of this

section):

• Perceptual selectivity. When updating statistics, only consider sensory

items which have changed very recently (last two clock ticks) and only in

schemas which make predictions about those items.

• Cognitive selectivity. When deciding whether to spin off a schema (make a

new fact), only consider sensory items which have changed in the last clock

tick, and only consider schemas which have had their statistics changed in

the last clock tick (such schemas can only have had their statistics changed

if they themselves made predictions involving sensory items which them-

selves have changed).

Put more precisely, the items used were as follows. Stati used the all changed items in

history, or CINIH selector (where the word “history” refers to a timeline of prior events,

of some chosen length or horizon, and in this case of length 2):

, where

while Spini used a specialization of this, in which the history is only the very last event,

which we shall call the changed item numbers, or CIN, selector for compactness:

, where

Stati CINIHH=

CINIHH AIN 0 T H≤<( )∃ Itemn t, Itemn t T–,≠{ }∩=

Spini CIN=

CIN AIN Itemn t, Itemn t 1–,≠{ }∩ CINIH1= =
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Similarly, the schemas used were as follows. Consider the set all bare schemas, or

ABS:11

To define Stats, we add to these schemas dependent upon changed items, to get:

, where

This selector is a special case of the more general one (which uses an arbitrary-length

history), in that it uses a history of length 1. The general case, of course, is:

Finally, Spins is defined as schemas with recently updated statistics, or

, where

Adding these changes amounts to adding some simple lookup tables to the basic algo-

rithm that track which items were updated in the last clock tick, and, for each item, which

schemas refer to it in their contexts or results. These tables are then used to determine

which sensory items or schemas will be participants in the statistical update or spinoffs.

Keeping the tables updated requires a negligible overhead on the basic algorithm.12

3.2.3.1 How has focus changed the computational effort?

The computational effort in the two n x m major loops is reduced by these selectors as

follows:

11.  Recall, from Section 3.1.3.2, on page 42, that bare schemas make no predictions about anything, and
that there is one of these per action at the start of any run.

ABS ASN 0 i Itemmax≤ ≤( ) SchemaDe pnOni¬∀{ }∩=

Stati ABSPSDUCIH=

ABSPSDUCI ABS SchemaDe pnOni CIN∈{ }∪=

ABSPSDUCIIHH ABS SchemaDe pnOni CINIHH∈{ }∪=

Spini SWRUS=

SWRUS ASN SchemaDe pnOni i CIN∈( ){ }∩=
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In any run which generates more than a trivial number of schemas or has more than a

handful of sensory bits, this is a dramatic reduction in the complexity, as shown in

Figure 8, on page 63. Another way to look at it is as follows:

• The unfocused algorithm allows the work of learning to grow as the full

cross-product of the total number of sensory bits (items) and the total num-

ber of predictions we make about the world (schemas).

• In the focused algorithm, the work of learning instead grows as the product

of the amount of change in the world times the number of predictions we

make about those items which changed.

If the world were such that every item changed at every step, and we had (somehow)

managed to make a prediction about every item in every schema, then these two algorithms

would behave identically. However, this does not describe very many plausible worlds in

which we might want an agent to do learning, nor is it plausible that every prediction the

agent may want to make about the world needs to mention every possible sensory bit the

agent can perceive.

12. Sensory: Updating the list of items which have changed recently (where recently is defined by the hori-
zon in use) runs in time linear with the number of items.

Cognitive: Each time we spin off a schema, we must update the table that maps items to schemas which
depend upon them, in order to properly reflect the dependence of the schema on the items. This update runs
in time linear with the number of items mentioned by the schema, and this number is very small anyway
(less than half a dozen or so in the runs described).

Result 1: The work per spinoff is linear, which means it is negligible compared to the rest of the algo-
rithm, which runs overall in approximately O(n2) time.

Result 2: We must perform the cognitive step above for each spinoff. Spinoffs become somewhat more
frequent per clock tick as the number of clock ticks increases (e.g., if there are more schemas in the knowl-
edge base, the number of new, spinoff schemas we are likely to create is higher). Thus, there is a slow
growth in the overall work per clock tick to keep these tables updated, which grows per clock tick as the
number of spinoffs per clock tick grows.

WorkStat CINIH2 ABSPSDUCI•=

WorkSpin CIN SWRUS•=
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The problem of learning here is still O(n2), of course. We are still correlating some sen-

sory bits with some predictions. However, the magnitude of this correlation has been

decreased by an amount reflecting the behavior of the world and the characteristics of our

predictions about that world.

3.2.3.2 Why were these parameters chosen?

The perceptual and cognitive strategies above place a high value on novel stimuli.

Causes which precede their effects by more than a couple of clock ticks are not attended to.

In the world described above, this is perfectly reasonable behavior. If the world had behav-

iors in it where more prior history was important, it would be necessary to attend further

back in time to make schemas which accurately predicted the effects of actions.

The actual temporal horizons13 used were determined empirically. For example, sev-

eral runs using horizons for parameters of 1, 2, 3, 5, 10, 20, and 100 were tried, for both

horizons (in other words, the cross-product of most of the combinations), and it was

observed that the increase in learning was negligible (though not zero) above the values

chosen. In the particular case of the sensory update horizon, values smaller than two tended

to cause the statistical machinery to malfunction, missing most transitions (e.g., it became

difficult to perceive that some particular bit did not change after some particular action).

Those readers familiar with the full schema mechanism described in [Drescher 91] may

wonder about the interactions of synthetic items and this temporal horizon, particularly

synthetic items employing composite actions. The runs investigated did not tend to gener-

ate large numbers of synthetic items (although see Section 4.4.2, on page 95, for some

other remarks on this subject). If synthetic items with composite actions (which are used,

for example, to represent object persistence [Drescher 91] and whose values might change

13. As specified in Section 3.2.3, the horizons were two clock ticks when doing perceptual update, and one
clock tick when finding candidates for spinoffs.



56

Goal-independent Learning Chapter 3

due to events arbitrarily far in the past) were much more common, the temporal horizons

used would most likely require some adjustment upwards. However, as Drescher points out

[Drescher 94], it might suffice to represent intermediate states that keep track of the effects

of the past events, so that only the temporally local values of those intermediate states need

be attended to. However, this has not been investigated here.

Note that the above problem with synthetic items and the temporal horizons would only

be true, however, if such synthetic items had actions which were composite—and this

implementation, which lacks composite actions, cannot ever generate such synthetic items.

Since all synthetic items generated in this implementation are therefore noncomposite,

looking arbitrarily far back in history is not necessary.

These particular strategies also place a high value on a very specific spatial locality.

Even sensory items that are very near items which have changed are not attended to. Since

this microworld only has objects which are one bit wide, and the actions which involve

them are, e.g., touch (which requires contact), this strategy works well.14 In a world where

actions had effects farther away than a single pixel in the visual field, or which contained

objects subtending more pixels in the visual field, for example, such a strategy would have

to be modified.

14. Selectors which attended to the unchanged items in a spatial “halo” around changed items were found to
be less efficient, in terms of work per reliable schema, than the selectors described here. A different micro-
world (such as one with spatially larger objects, or different types of actions available to the agent) might
require selectors that attended to a wider radius of (unchanged) sensory items around items which actually
changed, in which case such “haloing” would be necessary to reliably learn the effects of actions.
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3.3 Results

3.3.1 Evaluation of the focused algorithm

Two crucial questions that must be addressed concern how much the system learns

(completeness), and whether what it learns actually reflects its experience (correctness).

We must evaluate whether these focus of attention mechanisms impair that learning in any

way. After all, one way to decrease the work of learning would be to simply ignore the

world completely—but the resultant gain in speed could hardly be said to be worthwhile,

because nothing would be learned.

The discussion below is based on results from the infant/eyehand scenario. Results

from the Hamsterdam scenario have been comparable. However, since the majority of the

goal-independent mechanism was developed using the infant/eyehand scenario, the Ham-

sterdam results were primarily restricted to simple verification of similar savings for simi-

lar mechanisms, and a relatively smaller number of experiments were performed. (The

infant/eyehand scenario had literally dozens of experimental runs performed while the

algorithms were being developed, from which, e.g., the chart shown in Figure 8, on

page 63, is only a small sample. The Hamsterdam scenario tried out the resultant algo-

rithms for verification and demonstrated that they worked acceptably there, too, but was

not as exhaustively sampled as was the infant/eyehand scenario.)

3.3.1.1 Completeness

The schema system generates thousands of schemas in runs of reasonable duration, for

instance, runs of ten or twenty thousand iterations have generated over 7000 schemas. How

is one to know what all of these facts really represent? The state of the knowledge base is

critically dependent upon prior knowledge: a more-detailed schema can only be generated

from a less-detailed one, so any change in the learning mechanism which changes which
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schemas are generated leads to rapidly-diverging sets of generated schemas. While all may

say approximately the same thing, the fine details of exactly which facts are learned will

tend to be different. It would be possible to run enough iterations so that almost every pos-

sible fact that is true about the microworld could be learned to be true, but this is an unrea-

sonably large amount of computation (the total number of learned schemas plotted over

time appears to have an asymptote at least in the tens of thousands of schemas, even for this

simple world).

3.3.1.1.1 Manual evaluation methods

Manual inspection of the schemas generated by these runs was employed as a first cut

at establishing that alternative focus mechanisms were not substantially decreasing com-

pleteness, and tools were developed for examining how many schemas, representing what

general categories of facts (e.g., unimodal visual field, multimodal across various modali-

ties, etc) were being learned. By comparing rough totals of different types of generated

schemas, one could obtain at least some assurance that some particular class of schemas

was not being systematically omitted.

Another manual method of checking the results employed n-way comparisons of the

generated schemas themselves. The (context, action, result) triple of each schema can be

represented relatively compactly in text (ignoring all the statistical machinery that also

makes up a schema); by sorting the schemas generated in any particular run into a canoni-

cal order, and then comparing several runs side-by-side, one can gain an approximate idea

of how different runs fared. Figure 7, on page 60, demonstrates a tiny chunk from a 5-way

comparison of a certain set of runs, in which 5 somewhat-different runs were compared for

any large, overall changes to the types of schemas generated.15
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3.3.1.1.2 Automatic evaluation methods

Manual methods are tedious and error-prone. Furthermore, the underlying reason that

an agent learns is to aid it in the pursuit of its goal. This means that a sensible evaluation

strategy is to ask if the agent has, indeed, learned enough to accomplish goals that it was

unable to accomplish before learning.

A simple way to establish what the agent knows is therefore to use the generated sche-

mas as parts of a plan, chaining them together such that the result of one schema serves as

the context of the next, and to build these chains of schemas until at least one chain reaches

from the initial state of the microworld to the goal state. If we can build at least one such

chain, we can claim that the agent knows how to accomplish the goal in that context; the

shortness of the chain can be used as a metric as to how well the agent knows.16 For this

task, the schemas to be used should be those deemed reliable, e.g., those which have been

true sufficiently often in the past that their predictions have a good chance of being correct.

Simply employing all schemas, reliable or not, will lead to many grossly incorrect chains.

(A more complete description of the chaining system, and its use in evaluating the results

of learning, is deferred until Chapter 4, where the generated chains are also used in goal-

directed learning and behavior.)

At the start, no facts about the world are known, hence no chain of any length can be

built. However, after a few thousand schemas are built (generally between 1000 and 5000),

15. The layout of this chart, and its ordering, is not accidental. This is, after all, a manual evaluation
method; it depends on the ability of the human visual system to pick out aberrations in patterns. Large holes
or gaps in the columns merit closer attention, allowing the effort of checking carefully to be limited to only a
small number of cases.
16.  Note that the small size of the microworld and the small number of actions possible at any given
timestep mean that even a random walk through state space has a significant chance of accomplishing the
goal, if we are willing to wait long enough; hence, a path which is close to optimal, rather than one which
exists at all, should be our metric for whether learning has succeeded. See Section 4.4.3, on page 99, for a
comparison of the length of the chains built for a typical goal versus the average length of a random-walk to
the goal.
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-vf23/eyer/fovf00__________________________________________________________________________________________________________________________________________________
-vf23/eyer/fovf11__________________________________________________________________________________________________________________________________________________
-vf23/eyer/fovf12__________________________________________________________________________________________________________________________________________________
-vf23/eyer/fovf22__________________________________________________________________________________________________________________________________________________
-vf23/eyer/fovf33__________________________________________________________________________________________________________________________________________________
_________________________________-vf24/eyef/-fovf00_______________-vf24/eyef/-fovf00_______________________________________________________________________________
_________________________________-vf24/eyef/-fovf01_______________-vf24/eyef/-fovf01_______________-vf24/eyef/-fovf01_______________-vf24/eyef/-fovf01_____________
_________________________________-vf24/eyef/-fovf11_______________-vf24/eyef/-fovf11_______________________________________________________________________________
_________________________________-vf24/eyef/-fovf12_______________-vf24/eyef/-fovf12_______________________________________________________________________________
_________________________________-vf24/eyef/-fovf22_______________-vf24/eyef/-fovf22_______________________________________________________________________________
_________________________________-vf24/eyef/-fovf23_______________-vf24/eyef/-fovf23_______________-vf24/eyef/-fovf23_______________-vf24/eyef/-fovf23_____________
_________________________________-vf24/eyef/-fovf33_______________-vf24/eyef/-fovf33_______________________________________________________________________________
_________________________________-vf24/eyef/-vf23_________________-vf24/eyef/-vf23_________________-vf24/eyef/-vf23_________________-vf24/eyef/-vf23_______________
_________________________________-vf24/eyel/(-vp12&-vf34)_________-vf24/eyel/(-vp12&-vf34)_________________________________________________________________________
_________________________________-vf24/eyel/-vp10_________________-vf24/eyel/-vp10_________________________________________________________________________________
_________________________________-vf24/eyel/vf44___________________________________________________________________________________________________________________
-vf30/eyeb/vp01____________________________________________________________________________________-vf30/eyeb/vp01__________________-vf30/eyeb/vp01________________
_________________________________-vf30/eyer/-vp11_________________-vf30/eyer/-vp11_________________________________________________________________________________
___________________________________________________________________________________________________-vf31/eyeb/-fovr00_______________-vf31/eyeb/-fovr00_____________
___________________________________________________________________________________________________-vf31/eyeb/-fovr01_______________-vf31/eyeb/-fovr01_____________
___________________________________________________________________________________________________-vf31/eyeb/-fovr03_______________-vf31/eyeb/-fovr03_____________
___________________________________________________________________________________________________-vf31/eyeb/-fovr11_______________-vf31/eyeb/-fovr11_____________
___________________________________________________________________________________________________-vf31/eyeb/-fovr12_______________-vf31/eyeb/-fovr12_____________
___________________________________________________________________________________________________-vf31/eyeb/-fovr22_______________-vf31/eyeb/-fovr22_____________
___________________________________________________________________________________________________-vf31/eyeb/-fovr23_______________-vf31/eyeb/-fovr23_____________
___________________________________________________________________________________________________-vf31/eyeb/-fovr30_______________-vf31/eyeb/-fovr30_____________
___________________________________________________________________________________________________-vf31/eyeb/-fovr33_______________-vf31/eyeb/-fovr33_____________
___________________________________________________________________________________________________-vf31/eyeb/-vf32_________________-vf31/eyeb/-vf32_______________
-vf31/eyeb/vf31____________________________________________________________________________________________________________________________________________________
___________________________________________________________________________________________________-vf31/eyef/-vf30_________________-vf31/eyef/-vf30_______________
_________________________________-vf31/eyef/-vf44_________________-vf31/eyef/-vf44_________________________________________________________________________________
_________________________________-vf31/eyer/-fovb00_______________-vf31/eyer/-fovb00_______________________________________________________________________________
___________________________________________________________________________________________________-vf31/eyer/-fovb01_______________-vf31/eyer/-fovb01_____________
___________________________________________________________________________________________________-vf31/eyer/-fovb02_______________-vf31/eyer/-fovb02_____________
_________________________________-vf31/eyer/-fovb03_______________-vf31/eyer/-fovb03_______________________________________________________________________________
___________________________________________________________________________________________________-vf31/eyer/-fovb10_______________-vf31/eyer/-fovb10_____________
___________________________________________________________________________________________________-vf31/eyer/-fovb13_______________-vf31/eyer/-fovb13_____________
_________________________________-vf31/eyer/-fovb20_______________-vf31/eyer/-fovb20_______________________________________________________________________________
___________________________________________________________________________________________________-vf31/eyer/-fovb23_______________-vf31/eyer/-fovb23_____________
_________________________________-vf31/eyer/-fovb30_______________-vf31/eyer/-fovb30_______________________________________________________________________________
___________________________________________________________________________________________________-vf31/eyer/-fovb31_______________-vf31/eyer/-fovb31_____________
___________________________________________________________________________________________________-vf31/eyer/-fovb32_______________-vf31/eyer/-fovb32_____________
_________________________________-vf31/eyer/-fovb33_______________-vf31/eyer/-fovb33_______________________________________________________________________________
___________________________________________________________________________________________________-vf31/eyer/-vf21_________________-vf31/eyer/-vf21_______________
___________________________________________________________________________________________________-vf32&vf33/eyer/fovf00___________-vf32&vf33/eyer/fovf00_________
___________________________________________________________________________________________________-vf32&vf33/eyer/fovf11___________-vf32&vf33/eyer/fovf11_________
___________________________________________________________________________________________________-vf32&vf33/eyer/fovf12___________-vf32&vf33/eyer/fovf12_________
___________________________________________________________________________________________________-vf32&vf33/eyer/fovf22___________-vf32&vf33/eyer/fovf22_________
___________________________________________________________________________________________________-vf32&vf33/eyer/fovf33___________-vf32&vf33/eyer/fovf33_________
_________________________________-vf32/eyeb/-vf20_________________-vf32/eyeb/-vf20_________________-vf32/eyeb/-vf20_________________-vf32/eyeb/-vf20_______________

Figure 7: A tiny chunk of a 5-way comparison of generated schemas

Five columns of schemas, sorted alphabetically by their printed representations, are shown here side-by-side,
horizontally aligned. Small holes are fine, but large holes could indicate a potentially missing class of schemas.
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most starting states can plausibly chain to a simple goal state, such as centering the visual

field over the hand, in a close-to-optimal number of steps.

3.3.1.1.3 Completeness results

Given this mechanism, how well did the focus of attention mechanisms fare? Quite

well. In general, given the same approximate number of generated schemas, both the basic

and focused approaches cited above learned “the same” information: they could both have

plausibly short chains generated that led from initial states to goals. Both the chaining

mechanism described above, and manual inspection, showed no egregious gaps in the

knowledge or particular classes or types of facts that failed to be learned.

As shown in Figure 8, on page 63, and explained in Section 3.3.2, on page 62, the

focused approach tended to require approximately twice as many timesteps to yield the

same number of schemas as the unfocused approach. This means that a real robot which

employed these methods would require twice as many experiments or twice as much time

trundling about in the world to learn the same facts. However, the reduction of the amount

of computation required to learn these facts by between one and two orders of magnitude17

means that the processor such a robot must employ could be much smaller and cheaper—

which would probably make the difference between having it onboard and not. This is even

more compelling when one realizes that these computational savings get bigger and bigger

as the robot learns more facts.

3.3.1.2 Correctness

The statistical machinery of the schema mechanism goes to great pains to avoid being

fooled by occasional coincidence. Only if some change in the state of the world is posi-

tively correlated with an action more often than it is negatively correlated, and only if we

have seen enough instances of both the event happening after some specific action and the

17. For runs of this length, e.g., 1000-2000 schemas generated.
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event not happening in the absence of the action, and if the event is unexplainable by any

other schemas, will the mechanism conclude that the action is truly the cause of the event.

(This is an overview of the marginal attribution mechanism described in Section 3.1.3.2,

on page 42, and in [Drescher 91].)

Because of this, the only way that any learning algorithm which uses this system could

learn “incorrect” facts (e.g., correlations that do not, in fact, reflect true correlations in the

world) would be to systematically exclude relevant evidence that indicates that a schema

that is thought to be reliable is in fact unreliable. No evidence of this was found in spot

checks of any test runs. It is believed (but not proven) that none of the focused algorithms

described can lead to such systematic exclusion of relevant information: the mechanism

may miss correct correlations (such is the tradeoff of having a focus of attention in the first

place), but it will not miss only those correlations that would tend to otherwise invalidate a

schema thought to be reliable.

3.3.2 Comparison of the different strategies

Figure 8, on page 63, presents partial results from several runs with different choices of

selectors. Only the most salient combinations of selectors were included in this table. Of

those, the rows in boldface will be discussed below; the non-boldfaced rows are included

to give a feel for how different choices can influence the results.

The results in this table were all produced by runs 5000 iterations long. Similar runs of

two or three times as long have produced comparable results, with correspondingly greater

increases in  (see below).

The first four columns of the table show the particular selectors in use for any given

run; the top row shows those selectors which correspond to the basic (Drescher) algorithm,

β
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The names for the algorithms used in learning are explained in Section 3.2.1 through
Section 3.2.3. Results from the rows in boldface are discussed in this section. The non-bold-
faced rows are not discussed in the text, but are included for additional context. This table
is a sampling; in all, in excess of 30 different combinations of selectors were investigated.

The top line is effectively the “unfocused” case, as in [Drescher 91]; the bottom line is
considered the “best” or most tightly-focused case.

Algorithm Learning Work required Facts per work unit
Spinoff selectors Statistic selectors Schemas Inner loops (x106) Reliable schemas over

Items Schemas Items Schema Total Rel T/R Spin Stat Both Spin Stats Both
AIN ASN AIN ASN 1756 993 1.77 533 533 1066 1.9 1.9 0.9
AIN ASN CINIH ABSPSDUCI 1135 403 2.82 398 12 410 1.0 33.6 1.0
AIN ASN AIN ABSPSDUCI 1110 518 2.14 391 55 446 1.3 9.4 1.2
CIN ASN AIN ASN 1693 948 1.79 44 524 568 21.5 1.8 1.7
CIN SWRUS AIN ASN 1395 791 1.76 2 463 466 316.4 1.7 1.7
CIN ABSPSDUCI AIN ASN 1622 924 1.76 15 510 525 61.6 1.8 1.8
CIN ASN AIN ABSPSDUCI 1110 506 2.19 33 54 87 15.3 9.4 5.8
CIN ABSPSDUCI AIN ABSPSDUCI 1110 506 2.19 10 54 64 50.6 9.4 7.9
CIN ABSPSDUCI CINIH ASN 1366 643 2.12 13 64 77 49.5 10.0 8.4
CIN ASN CINIH ABSPSDUCI 1136 399 2.85 34 12 46 11.7 33.3 8.7
CIN SWRUS AIN ABSPSDUCI 1102 498 2.21 1 53 54 415.0 9.4 9.2
CIN SWRUS CINIH ASN 1353 688 1.97 2 64 66 275.2 10.8 10.3
CIN ABSPSDUCI CINIH ABSPSDUCI 1136 399 2.85 10 12 22 40.7 33.3 18.3
CIN SWRUS CINIH ABSPSDUCI 1134 398 2.85 1 12 13 331.7 33.2 30.2

Figure 8: Summary of goal-independent results
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while the bottom row shows the most highly-focused algorithm, as described in

Section 3.2.3, on page 52.

The table is sorted in order by its last column, which shows number of reliable schemas

generated during the entire 5000-iteration run, divided by the amount of total work

required. For conciseness, we shall call the value in this column , which is defined as:

where the multiplication by 10-6 is simply to normalize the resulting numbers to be near

unity, given the millionfold ratio between work units and number of schemas generated.

The bold rows in the table show successive changes to the selectors used, one at a time.

The top row is the basic algorithm, which shows that about a billion total inner loops were

required to learn 1756 schemas, 993 of which were reliable, which gives a  of 0.9.

Note that, because the world is stochastic (for example, the two “inanimate” objects

occasionally move from one square to a neighboring square, approximately every few hun-

dred clock ticks), one might imagine that there would be variance in the number and reli-

ability of schemas generated between two runs, even if they use the same strategy. In fact,

this is true, but the variance is quite low: out of a run of two or three thousand schemas with

the same strategy and different seeds for the random number generator (hence different

random behaviors in the world), the difference in the number of schemas generated is gen-

erally less than ten. In other words, the number of schemas generated is usually within 1%

between runs using the same algorithm. Further, the types of schemas generated also match

each other quite closely, as determined by n-way comparisons between runs, using the

techniques discussed in Section 3.3.1.1.1, on page 58. (The exact schemas generated will,

of course, be different, as discussed in Section 3.3.1.1, on page 57).
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Let us examine changes to the selectors for spinoffs, which determine the cognitive

selectivity, or what is attended to in learning new schemas from the existing schemas.

When we change 

 

Spin

 

i

 

 from 

 

AIN

 

 to 

 

CIN 

 

(e.g., from all item numbers to those whose items

changed at the last clock tick), the amount of work drops by about a factor of two, while

the number of generated schemas barely decreases. This means that virtually all schemas

made predictions about items which changed in the immediately preceding clock tick (e.g.,

that corresponding to the action just taken), hence looking any further back in time for

them costs us computation without a concomitant increase in utility.

Changing 

 

Spin

 

s

 

 from 

 

ASN

 

 to 

 

SWRUS 

 

(e.g., from all schema numbers to those whose

statistics were recently updated), given that 

 

Spin

 

i

 

 is already using the selector 

 

CIN

 

, yields

a small improvement in  (not visible at the precision in the table), and also a small

improvement in the ratio of reliable to total schemas. (Were 

 

Spin

 

i

 

 not already 

 

CIN

 

, the

improvement would be far more dramatic, as demonstrated in runs not shown in the table.)

Note, however, the enormous decrease in the amount of work done by the spinoff mecha-

nism when 

 

Spin

 

s

 

 changes from 

 

ASN

 

 to 

 

SWRUS

 

, dropping from 10% of 

 

Work

 

Total

 

 to 1%.

Next, let us examine the effects of perceptual selectivity. Changing 

 

Stat

 

s

 

 from 

 

ASN

 

 to

 

ABSPSDUCI

 

 (e.g., from all schema numbers to all bare schemas plus schemas dependent

upon changed items) increases  by a factor of 5.4, to 9.2, by decreasing the amount of

work required to update the perceptual statistics by almost an order of magnitude. In

essence, we are now only bothering to update the statistical information in the extended

context or extended result of a schema, for some particular sensory item in some particular

schema, if the schema depends upon that sensory item.

Finally, examine the last bold row, in which 

 

Stat

 

i

 

 was changed from 

 

AIN

 

 to 

 

CINIH

 

(e.g., from all item numbers to all item numbers whose items changed in the last two clock

ticks).  increases by a factor of 3.2, relative to the previous case, as the amount of statis-

β

β

β
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tical-update work dropped by about a factor of four. We are now perceiving effectively

only those changes in sensory items which might have some bearing in spinning off a

schema which already references them.

Note that each successive tightening of the focus has some cost in the number of sche-

mas learned in a given number of iterations. This means that, e.g., a real robot would

require increasingly large numbers of experiments in the real world to learn the same facts.

However, this is not a serious problem, since, given the focus algorithm described here,

such a robot would require only about twice as many experiments, for any size run, as it

would in the unfocused algorithm. This means that its learning rate has been slowed down

by a small, roughly constant factor, while the computation required to do the learning has

dropped enormously.


