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Chapter 2: The Basic Framework

 

2.1 Focus of Attention Methods

 

2.1.1 Introduction

 

To ease its learning task, an agent can employ a range of methods for focus of attention.

It can be selective in terms of what sensor data it attends to as well as what internal struc-

tures it considers when acting and learning. These forms of focus of attention are termed

 

perceptual

 

 and 

 

cognitive selectivity

 

 respectively. They are illustrated by the left and right

braces respectively in Figure 1 below, and discussed in more detail in the following sec-

tions.

Along another dimension, there is a distinction between 

 

domain-dependent

 

 and

 

domain-independent methods

 

 for focus of attention. Domain-independent methods repre-

sent general heuristics for focus of attention that can be employed in any domain. For

example, one can attempt only to correlate events that happened close to one another in

 

Figure 1: Sensory (left) and cognitive (right) pruning
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time. Domain-dependent heuristics, on the other hand, are specific to the domain at hand.

They typically have been preprogrammed (by natural or artificial selection or by a pro-

grammer). For example, experiments have shown that when a rat becomes sick to its stom-

ach, it will assume that whatever it ate recently is causally related to the sickness. That is,

it is very hard for a rat to learn that a light flash or the sound of a bell is correlated to the

stomach problem because it will focus on recently eaten food as the cause of the problem

[Garcia 72]. This demonstrates that animals have evolved to pay attention to particular

events when learning about certain effects.

Finally, the focus mechanism can be 

 

goal-driven

 

 and/or 

 

world-driven

 

. Focus of atten-

tion in animals is both strongly world- and goal-driven. The structure of the world and the

sensory system determines which sensory or memory bits may be “usually” ignored (e.g.

those not local in time and space), while the task determines those which are relevant some

of the time and not at other times. For example, when hungry, any form of food is a very

important stimulus to attend to; learning how to get to some would presumably take on

greater important in this case.

The results reported in Chapter 3 concern world-dependent, domain-independent cog-

nitive and sensory selectivity. Such pruning depends on invariant properties of the environ-

ment

 

1

 

 and common tasks, and does not take into account what the current goal of the agent

is. The methods can be applied to virtually any domain. While it is true that, in complex

worlds, goal-driven and domain-dependent pruning is quite important, it is surprising how

much of an advantage even goal-independent pruning can convey. Using Chapter 3’s work

as a base, Chapter 4 then investigates the added leverage of adding goals to the learning

 

1. In a physical, terrestrial environment, such properties might include causality (actions must precede
their effects), locality (most effects are near their causes), space, time, gravity, etc.
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system. That is, the actions taken and cognitive and perceptual pruning that occurs are con-

trolled by the short-term goals of the agent.

 

2.1.2 Perceptual selectivity

 

Perceptual selectivity limits what stimuli might possibly be attended to at any one time,

which puts limits on what might be learnable at that time. For example, a real creature

would not pay attention to every square centimeter of its skin and try to correlate every

nerve ending therein to every possible retinal cell in its eyes at every moment. Conse-

quently, it might never learn some peculiar correlation between a particular patch of skin

and a flash of light on some part of its retina, but presumably such correlations are not

important to it in its natural environment.

Obvious physical dimensions along which to be perceptually selective include 

 

spatial

 

and 

 

temporal

 

 selectivity.

 

2

 

 The universe tends to display spatial locality: many causes are

generally located nearby to their effects (for example, pushing an object requires one to be

in contact with it). Further, many causes lead to an observable effect within a short time

(letting go of an object in a gravity field causes it to start falling immediately, rather than a

week later). Real creatures use these sorts of spatial and temporal locality all the time, often

by using eyes that only have high resolution in a small part of their visual field, and only

noticing correlations between events that take place reasonably close together in time.

While it is certainly 

 

possible

 

 to conceive of an agent that tracks every single visual event

in the sphere around it, all at the same time, and which can remember pairs of events sep-

arated by arbitrary amounts of time without knowing a priori that the events might be

related, the computational burden in doing so is essentially unbounded.

 

3

 

 The algorithm dis-

 

2. Another dimension of selectivity concerns the amount of preprocessing done to the input. For example,
Drescher points out that, in a realistic world, correlating unprocessed retinal input is not very useful, because
it does not map well onto aspects of the world that are good building blocks for inductive generalization
[Drescher 94]. Such changes of level are not addressed in this research.
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cussed in this research implements temporal selectivity as well as spatial selectivity to

reduce the number of sensor data that the agent has to correlate with its internal structures

(see Figure 1, on page 23). Note that the perceptual selectivity implemented is of a passive

nature: the agent prunes its “bag of sensory bits,” rather than changing the mapping of that

bag of bits to the physical world by performing an action that changes the sensory data

(such as changing its point of view). The latter would constitute active perceptual attention

(e.g., [Aloimonos 93] among others).

 

2.1.3 Cognitive selectivity

 

Cognitive selectivity limits what internal structures are attended to at any given

moment.

Notice that for any agent that learns many facts,

 

4

 

 being cognitively selective is likely

to be even more important than being perceptually selective, in the long run. The reasons

for this are straightforward. First, consider the ratio of sensory to memory items. While the

total number of possible sensory bits is limited, the number of internal structures may grow

without bound.

 

5

 

 This means that, were we to use a strategy which prunes all sensory infor-

mation and all cognitive information each to some 

 

constant fraction

 

 of their original,

unpruned case, we would cut the total computation required by some constant factor—but

this factor would be much larger in the cognitive case, because the number of facts stored

would likely far outnumber the number of sensory bits available.

 

3. Many algorithms for learning from experience employ an extreme form of temporal selectivity: the
agent can only correlate events that are “one timestep” apart. 
4. In this case, since we are discussing a causal model builder, these facts are correlations of actions and
their results.
5. The assumption here is that every fact learned requires some internal structure to represent it. If the
learning algorithm in use must examine prior facts to decide whether to invalidate the fact, create a new one,
etc, then the computational effort of the algorithm will tend to increase as more facts are learned.
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Second, consider a strategy in which a 

 

constant number

 

 of sensory bits or a 

 

constant

number

 

 of remembered facts are attended to at any given time. This is analogous to the sit-

uation in which a real organism has hard performance limits along both perceptual and

cognitive axes; no matter how many facts it knows, it can only keep a fixed number of them

in working memory. In this case, as the internal structures grow, the organism can do its

sensory-to-memory correlations in essentially constant time, rather than the aforemen-

tioned 

 

O(n

 

2

 

)

 

 time, though at a cost: as its knowledge grows, it is ignoring at any given time

an increasingly large percentage of all the knowledge it has.

Compromise strategies which keep growth in the work required to perform these cor-

relations within bounds (e.g., less than 

 

O(n

 

2

 

)

 

), yet not give in completely to utilizing ever-

smaller fractions of current knowledge (e.g., more than 

 

O(1)

 

) are possible.

For example, one can use properties of the world or characteristics of the sensor data to

restrict the number of structures looked at (as is the case in the algorithms described in this

thesis). Not all internal structures are equally relevant at any given instant. In particular,

internal structures that refer neither to current nor expected future perceptual inputs are less

likely to be useful than internal structures which do. This is the particular domain-indepen-

dent, goal-independent, world-driven heuristic for cognitive selectivity which is employed

in Chapter 3. One might argue that, in real creatures, evolution optimizes them to ignore

those aspects of the environment which do not change; for example, there is little reason to

perceive nor reason about the existence of air unless one is in an environment in which it is

not ubiquitous.

Another way to compromise is to use the current 

 

goal

 

 to help select what facts are rel-

evant; such 

 

goal-driven pruning 

 

is discussed in Chapter 4. Since generally only a small

number of goals are likely to be relevant or applicable at any one time (often only one), this

can help to keep the amount of correlation work in bounds.

 

6

 

 Again, in real creatures
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domain-dependent and goal-driven cognitive selectivity play a large role too. For example,

the subset of internal structures that are considered at some instant is not only determined

by what the agent senses and what it expects to sense next, but also by what it is “aiming”

to sense or not sense (i.e., the desired goals).

 

2.2 The testbed microworlds

 

In order to evaluate the effects of adding focus of attention to a system that can learn a

world model, we need something which learns (the 

 

agent

 

) and some world model for it to

learn in (the 

 

domain

 

 or 

 

environment

 

 of the agent). The two agents chosen here were both

software agents, operating in a a 

 

microworld

 

 consisting of a simulated environment. The

combination of a particular agent and its associated environment is called a 

 

scenario

 

.

The sections immediately following describe the two scenarios used here. Later, in

Section 3.2.1, on page 48, we describe what the learning system does with the sensory

information it receives from either environment.

In both scenarios, the world may be unpredictable; actions are allowed to have no per-

ceivable effect for any of several reasons, including incomplete sensor information (in nei-

ther scenario does the agent have an all-encompassing sensor view of the world), and

external motions or actors in the world that cannot be controlled by the agent.

In general, the learning system is connected “at arm’s length” to either of the two

microworlds, and can issue only one of a small number of commands at each timestep of

the simulation. It gets back a collection of sensory bits describing what the simulated sen-

sors are perceiving, and does not have any other access to the internal state of the micro-

 

6. Another way to compromise might be to investigate much more of memory when other demands on the
agent’s time are minimal, essentially doing as much extra work as possible when not otherwise occupied
with immediate concerns or goals which must be completed under tight deadlines.
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world. Actions are taken at random in the case of goal-independent learning, but are

informed from the goal system when performing goal-dependent learning.

Appendix A describes the overall system architecture used in this research, and shows

a schematic of how the learning system, the action selection system, and the goal system

interact. Figure 20, on page 141, describes what pieces of the system communicate with

which other pieces, and Figure 21, on page 143, shows details of when the learning system

and the microworld are allowed to exchange information. Appendix A also provides some

implementation details specific to this particular system, which might be of use in repro-

ducing it.

 

2.2.1 The infant/eyehand scenario

 

The most extensively studied scenario, both in prior work with the particular learning

system employed [Drescher 91], and in this research, concerns a simulated infant in a sim-

ple, mostly (but not completely) static microworld.

Drescher’s original system is concerned with Piagetian modeling, so his microworld is

oriented towards the world as perceived by a very young infant (younger than eight months

old, e.g., before early fourth Piagetian stage). The simplified microworld, shown in

Figure 2, on page 30, consists of a simulated, two-dimensional “universe” of 49 grid

squares (7 by 7). Each square can be either empty or contain some object. Superimposed

upon this universe is a crudely simulated eye which can see a square region 5 grid squares

on a side, and which can be moved around within the limits of the simulated universe. This

eye has a fovea of a few squares in the center, which can see additional details in objects

(these extra details can be used to differentiate objects enough to determine their identi-

ties). The universe also includes a hand which occupies a grid square, and can bump into
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and grasp objects. (The infant’s arm is not represented; just the hand.) An immobile body

occupies another grid square.

The infant has 10 possible actions that it can take at any given timestep, consisting of

moving the hand or eye forward, backward, left, or right (8 actions in all), and of opening

or closing the hand. It takes one of these actions at every timestep.

The possible sensory inputs consist of all bits arriving from the eye, proprioceptive

inputs from eye and hand (which indicate where, relative to the body, the eye is pointing or

the hand is reaching), tactile inputs from the hand and body, and taste inputs from the

mouth (if an object was in contact with it).

 

7

 

 The eye reports only whether an object (not

 

which

 

 object, only the presence of one) is in a grid square or not, except in its central fovea,

where it reports many additional bits.

 

8

 

7. The hand gets four one-bit details when it is in contact with an object on its left side, which can be used
to differentiate objects by touch. It also gets one bit per side indicating whether an object is in contact with it
on that side. Similarly, the body gets one bit apiece to indicate contact on any of its four sides; if an object is
in contact on the front side of the body (the mouth), then four bits of taste information are also available.
Finally, there is one bit each representing whether the hand is currently closed and whether it is grasping an
object.

 

Figure 2: The eyehand/infant domain microworld
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The simulated infant does 

 

not

 

 have a panoramic view of all 49 squares of the universe

at once; at any given instant, it only knows about what the eye can see, what the hand is

touching, or what the mouth is tasting, combined with proprioceptive inputs for eye and

hand position. In particular, certain senses, viewed unimodally, are subject to perceptual

aliasing, in which two distinct situations in the environment appear identical to the sensory

system of the agent [Whitehead and Ballard 90]. For example, if a schema mentions only

a particular bit in the visual field, without also referring to the visual proprioceptive inputs

(which determine where the eye is pointing), then that schema may be subject to such alias-

ing—several different situations have been collapsed into the same representation, as far as

the agent is concerned. Similarly, any schema mentioning any visual-field sensory item

that is not in the fovea may alias different objects, since the non-foveal visual field reports

only the presence or absence of an object in each position, rather than the exact identity of

the object in question.

Typical knowledge that is learned about the world includes correlations between

motion of the hand and motions of the image of the hand in the visual field; motions of the

eye and motions of all objects in the visual field; correspondences between proprioceptive

and haptic or visual information; whether or not an object will be graspable depending on

whether or not it is felt to be in contact with the hand, and many more ([Drescher 91] and

[Ramstad 92] report at length the many unimodal and multimodal facts about the micro-

world learned by this system).

 

8. Each of the five foveal squares provides 25 bits of detail information. Each different object sets a differ-
ent combination of these 25 bits; hence, objects may be differentiated visually when they are in a foveal
square, because different combinations of bits are perceived. Note that each foveal square covers one coarse
visual square, and all motion is quantized by these coarse visual squares: this means that the details corre-
sponding to some object will never be half on one foveal square and half on another. To put this another way,
if an object is somewhere in the fovea, there are only five different positions (corresponding to the five dif-
ferent foveal squares) that any one object can be in. Objects are never rotated.
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Typical strategic goals for the infant in this microworld include centering an object in

the visual field, moving the hand into proximity to an object in order to grasp it, and so

forth. Clearly, such goals cannot be accomplished in reasonable time without having

learned about the effects of the infant’s actions.

 

9

 

2.2.2 The Hamsterdam scenario

 

The second agent and environment used in this research were based on the Hamster-

dam system [Blumberg 94]. This system’s primary use is for investigating ethological

models of action-selection [Blumberg 94], and it is also used as a major component of the

“magic mirror” virtual environment created for the 

 

ALIVE

 

 project [Darrell 94] [Maes 93].

The Hamsterdam system consists of a three-dimensional world in which simulated

hamsters and predators may interact. The world also includes a floor, walls, food and water

sources, and so forth. A second instantiation of the 

 

ALIVE

 

 project included a humanoid pup-

pet, which ran under control of a simple finite-state machine, rather than the more compli-

cated, ethologically-based controllers used for the hamsters and the predators. The entire

microworld ran in real time, and was rendered as it ran using SGI Inventor on a Silicon

Graphics workstation. Figure 3, on page 33, shows a typical scene from Hamsterdam, in

which a hamster is in the lower left, and a predator is in the upper right. (The predator is

currently unable to escape its box of walls, but a human outside of the simulation has the

ability to slide the wall aside and enable the predator to reach the hamster.) Figure 4, imme-

diately below Figure 3, shows the puppet, pictured standing alone in the world.

 

9. The phrase “reasonable time” is important: since the world is relatively small and the action set con-
strained, it might be possible to accomplish certain strategic goals by taking 

 

random

 

 actions and eventually
reaching the goal by luck. However, as demonstrated in Section 4.4.3, on page 99, the average number of
actions employed to reach a typical strategic goal are at least an order of magnitude shorter when the agent
has learned the consequences of its actions than when the agent is not allowed to learn.
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Figure 3: Hamsterdam with a hamster and a predator

Figure 4: Hamsterdam with a puppet
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The animals in the original Hamsterdam system have a sensory system resembling that

of a robot sonar system. They shoot out 15 simulated rays in a horizontal fan at floor level,

subtending 180 degrees total, and get back sonar-like echoes which indicate, along each

ray, how close any given object is. The echo actually reveals the identity and type of any

given object, rather than simply reporting that “something” is there. A typical representa-

tion of such a sensor fan appears in Figure 5, below, as rendered by Hamsterdam, in which

the white squares at various distances along the radials are the sensor echoes of (in this

case) part of a cul-de-sac where several walls meet. This sensory system, unlike that in the

infant/eyehand scenario, is not particularly multimodal. The information returned for an

object consists of the range 

 

r

 

 and angle 

 

θ

 

 

 

at which the object is sighted: this is essentially

purely visual. No proprioceptive information is available. The qualities reflected by taste

and texture in the infant/eyehand scenario are reflected most closely by the tags returned

by the sensor system, which indicate object identity and type.

Since the underlying learning system used in this research (e.g., the 

 

schema system

 

[Drescher 91], without the composite-action system) requires all sensory information to be

reduced to individual boolean predicates, rather than, e.g., numbers or ranges (see

Section 3.2.1, on page 48), the results of the sensory fan must be discretized. This is

accomplished as follows.

 

Figure 5: Hamsterdam sensor fan
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First, positions in the polar coordinate system defined by 

 

r

 

 and 

 

θ

 

 are quantized. The

original, continuous value of 

 

r

 

 is reduced to one of five ranges, compressing 

 

r

 

 values to

only five distinct quantities. These ranges are, in fact, scaled logarithmically, so that ranges

which are farther from the agent cover more distance in the unscaled, original space; this

provides more detailed range information for objects which are nearby without requiring a

large number of additional ranges.

If an object is at some particular combination of 

 

r

 

 and 

 

θ

 

, the sensory item (a single bit)

corresponding to that combination is turned on. Since there are 15 radials and 5 ranges, this

means that there are 75 sensory items devoted to 

 

r

 

/

 

theta

 

 information. Note that these sen-

sory items cannot be used to differentiate one object from another, but merely to indicate

that an object occupies that particular position. In this respect, they are similar to the coarse

visual field items in the infant/eyehand scenario.

In addition to these inputs, the sensor fan is also “foveated” to yield higher-quality

information at short ranges in the center of the fan. The central three radials, for the nearest

four ranges, also return one bit apiece to indicate whether an object at that position is one

of: a hamster, a predator, a wall, food, or water. The cross product of these 3 by 4 by 5 pos-

sibilities yields another 60 sensory items.

The discretized sensory system is illustrated in the schematic below. The foveation is

shown by the gray region. Note that the logarithmic scaling of 

 

r

 

 is actually more pro-

nounced than shown in this diagram

 

Figure 6: Discretization and foveation of the Hamsterdam sensor fan
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This sensory system has all of the possible problems with sensory aliasing described in

Section 2.2.1, on page 29, in the description of the infant/eyehand scenario, and more. In

particular, the infant/eyehand scenario at least has proprioceptive inputs from its eye, so it

could (in theory) be able to build a complete world picture by taking into account the cur-

rent portion of the world encompassed by its eye (as revealed by proprioceptive inputs),

combined with current inputs from the eye itself. In the Hamsterdam scenario, even that

level of information is unavailable, since the actors in the world are free to roam about it,

and information about their current position or orientation is not available from the sensory

system (and would have to be inferred either from available sensory information, dead

reckoning from a known landmark, or something similar). If the infant/eyehand scenario

did not make proprioceptive sensory items available from the hand and eye, it would

resemble this aspect of the Hamsterdam scenario.

In the 

 

ALIVE

 

 system [Maes 93], the puppet never “shared the stage” with the hamsters

and the predators; instead, users of the systems could switch between these two worlds. As

modified for this research, the puppet and the animals are both allowed to share the same

world.

Further, the puppet in 

 

ALIVE

 

 did not have an ethologically-based action controller;

instead, inputs from the visual tracking system which tracked human participants drove a

simple finite-state machine which in turn commanded various movements of the puppet.

As modified here, the puppet’s actions are controlled by the learning system, and it has had

the hamster sensory system “grafted on” to serve as input sensory items to the learning sys-

tem.

The learning system may only control the puppet, and not any of the other animals or,

e.g., the position of the walls. The allowable motions of the puppet include walking for-
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ward a step, turning in either direction,

 

10

 

 standing up from a sitting position, and sitting

down again.

As in the infant/eyehand scenario, learning the consequences of actions includes learn-

ing the correlation between actions such as rotating or walking and the observed movement

of objects in the sensor fan. Goals include rotating until an object is centered along a foveal

ray, walking until an object is at minimum range, and so forth.

Because the Hamsterdam scenario is significantly more active than the infant/eyehand

scenario (e.g., hamsters or predators may be rolling around all the time, causing many

changes to the environment regardless of what the agent is doing), the learning system has

an explicit representation of a 

 

null action

 

 in this scenario, used to help model the 

 

result of

not doing anything

 

. See Appendix A for further details about null actions.

 

10.  The puppet turns by an amount which matches the angular offset of a pair of rays in the sensor fan, e.g.,
about 12.857 degrees. This was chosen to conveniently match the action to the sensory system, in the way
that moving the eye or hand in the eyehand/infant scenario causes all the other sensory inputs (e.g., proprio-
ceptive, visual) to slide one position in some direction.




